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SUMMARY

The diversity of mononuclear phagocyte (MNP) subpopulations across tissues is one of the key physiological
characteristics of the immune system. Here, we focus on understanding the metabolic variability of MNPs
through metabolic network analysis applied to three large-scale transcriptional datasets: we introduce (1)
an ImmGen MNP open-source dataset of 337 samples across 26 tissues; (2) a myeloid subset of InmGen
Phase | dataset (202 MNP samples); and (3) a myeloid mouse single-cell RNA sequencing (scRNA-seq) data-
set (51,364 cells) assembled based on Tabula Muris Senis. To analyze such large-scale datasets, we develop
a network-based computational approach, genes and metabolites (GAM) clustering, for unbiased identifica-
tion of the key metabolic subnetworks based on transcriptional profiles. We define 9 metabolic subnetworks
that encapsulate the metabolic differences within MNP from 38 different tissues. Obtained modules reveal
that cholesterol synthesis appears particularly active within the migratory dendritic cells, while glutathione
synthesis is essential for cysteinyl leukotriene production by peritoneal and lung macrophages.

INTRODUCTION tory."> An additional dimension of this diversity is manifested

by the metabolic characteristics of the individual mononuclear
The diversity of the myeloid cells across different tissues is truly ~ phagocytes, which can vary significantly based on the cell type
astonishing, both in function and in their developmental trajec-  and its location.> At present, direct metabolomic profiling of
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tissue-residing subpopulations is not feasible, as the process of
ex vivo sorting can be lengthy and cause significant metabolic
perturbations.®” However, RNA levels are significantly more sta-
ble in the sorting process and can serve as a reasonably reliable
proxy for activities of metabolic pathways.®° In this work, we
focus on understanding metabolic variability across phagocytic
subpopulations through integrated examination of several
large-scale datasets that transcriptionally profiled subsets of
myeloid cells (Figures 1A-1C). Specifically, we have assembled
a compendium of three datasets, including the public release
of the dataset generated by the mononuclear phagocyte open-
source (MNP OS) ImmGen project.'®

The ImmGen MNP OS dataset totals 337 samples and pro-
vides a source of information about individual cell subpopula-
tions (Figures 1D and 1E). It extends the previous ImmGen effort
that included 202 samples of various MNPs, also analyzed in this
study (Figures 1F and 1G). In addition to an increased number of
mature cell populations from adult mice (monocytes, macro-
phages, and dendritic cells), the MNP OS dataset contains mac-
rophages from the yolk sac (embryonic day 10.5 [E10.5]) and
macrophages differentiated in vitro from embryonic stem cells
(embryoid body-derived macrophages, E6-E8). Furthermore,
we leveraged recently released single-cell RNA sequencing
(RNA-seq) profiling of the multiple murine organs (Tabula Muris
Senis'") and reanalyzed those data by focusing only on the
phagocytic populations across 18 tissues (Figures 1H and 1l).
Taken together, a compendium of data assembled in this work
covers multiple cell subpopulations found across 38 different tis-
sues (Figure 1B).

Using these transcriptional data, we sought to identify the ma-
jor metabolic features characteristic of the different populations
of phagocytic cells and define how these features vary across
the cell types and their locations. Such a computational task
has not been addressed previously for data of such scale. Indeed,
we previously described a computational approach, called genes
and metabolites (GAM),'? that uses metabolic networks as the
backbone for analysis of transcriptional data and provides a veri-
fiable and systematic description of the metabolic differences
between two conditions.® However, the datasets in question
contain hundreds or even thousands of individual profiles, while
the GAM approach is designed to analyze comparisons between
two conditions. Therefore, we have developed a computational
approach, GAM-clustering, which performs an unbiased search
of a collection of metabolic subnetworks that jointly define meta-
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bolic variability across large datasets (available on GitHub; see
STAR Methods). By doing so, GAM-clustering reveals metaboli-
cally similar subpopulations in a manner that does not require
explicit annotation or pairwise comparison of individual samples.
We demonstrate that this approach is more powerful in terms of
identifying metabolic modules compared with conventional gene
expression clustering approaches. Our analysis revealed major
metabolic features associated with different cell subpopulations
and highlighted several metabolic modules that are specific to
individual cell types, tissues of residence, or developmental
stages. As an example, GAM-clustering analysis revealed that
the cholesterol de novo synthesis pathway might play an impor-
tant role in the context of migratory dendritic cells (DCs), which
we validated by measuring membrane cholesterol levels in
migratory and tissue-resident DCs and using in vivo pharmaco-
logical inhibition of cholesterol synthesis followed by tracking of
DC migration. As a second example, GAM-clustering revealed
the antioxidant system as an important accompaniment of arach-
idonic acid metabolism during inflammatory response in tissue
macrophages. Experimental measurement of cysteinyl leukotri-
enes production levels after inhibiting glutathione synthesis
showed a biological effect of this system in peritoneal and lung
alveolar macrophages.

Taken together, our work provides both (1) a data and analysis
resource in terms of studying the variability of MNPs, as well as
(2) a validated computational approach that can unbiasedly
analyze both single-cell RNA-seq data as well as multi-sample
bulk RNA-seq datasets in terms of key underlying metabolic fea-
tures. Furthermore, we provide direct interactive access to the
data for examination and visualization through both single-cell
RNA-seq and bulk RNA-seq visualization servers, including
metabolic cluster annotations obtained in this work (https://
artyomovlab.wustl.edu/immgen-met/).

RESULTS

MNP OS and ImmGen Phase 1 (MNP P1) datasets

As a part of the OS ImmGen Project, a total of 337 samples were
collected and profiled through the collaborative effort of 16 lab-
oratories (Figures 1D, 1E, and S1A; Table S1). Each laboratory
sorted specific populations of MNPs from 26 distinct tissues,
isolated RNA from these populations, and submitted it for
centralized deep RNA-seq and subsequent quantitation. Along
with their samples of interest, each laboratory included RNA
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Figure 1. General overview of InmGen mononuclear phagocytes open-source (IG MNP OS), InmGen mononuclear phagocytes phase 1 (IG
MNP P1), and myeloid Tabula Muris Senis (nTMS) datasets
(A) Schematic representation of Mus musculus tissues, where samples were derived from (marked with colored dots depending on the dataset).
(B) Number of tissues overlapping across all datasets.
(C-G) Cell-type distribution across all datasets. Principal-component analysis (PCA) based on 12,000 most expressed genes across all samples colored by the

tissue of its origin (E and G) or cell type (D and F).

(H and 1) Uniform manifold approximation and projection (UMAP) representation of cells colored by the tissue of its origin (1) or its type (H). LN, lymph node.

from locally sorted peritoneal macrophages as a common con-

Methods, RNA-seq data processing). Of note, 15 samples from

the MNP OS dataset were previously used in the study of sexual
trol for evaluation/correction of potential batch effects (STAR  dimorphism of the immune system transcriptome,’® while the
complete dataset has not been analyzed before this work.
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Overall, the transcriptional data demonstrated high concor-
dance between different collection sites and were merged into
a final transcriptional master table (Figures S1B and S1C; Data
S1). Previously established markers of individual myeloid subpop-
ulations'*~'® matched well with the sorted populations (Figure S2),
indicating the overall consistency of the dataset across different
research groups. As individual principal-component analysis
(PCA) plots show (Figure 1D), samples have clustered in accord
with their broad annotation as macrophages, DCs, monocytes,
or microglia and not in terms of lab sorting or in terms of
sequencing batch. Generally, subpopulation-specific effects
were stronger than tissue-specific differences within individual
subpopulations, as evident by comparing Figures 1D and 1E. To
estimate the degree of metabolic variability in the data, we exam-
ined the enrichment of annotated metabolic pathways in this data-
set, revealing coherent transcriptional patterns across individual
subpopulations (Figure S3A). This indicated that systematic eval-
uation of the metabolic subnetworks within the data is warranted.

Initial ImmGen P1 data published previously® include 202
samples of MNPs with a higher contribution of progenitor popu-
lations and a smaller number of microglial samples (Figure 1F)
overall spanning 16 tissues (Figure 1G)—we will refer to this sub-
set as ImmGen MNP P1 from here onward. Similar to the MNP
OS dataset, enrichment in metabolic pathways across subpop-
ulations in MNP P1 data demonstrated coordinate variations
across the samples (Figure S3B).

Single-cell myeloid Tabula Muris Senis (nTMS) dataset
The Tabula Muris consortium has performed single-cell RNA-
seq for many tissues without explicit sorting into individual cell
populations.’’ These data include myeloid cells localized in the
corresponding tissues, which can be computationally separated
based on the expression of common myeloid signatures. Using
the latest public dataset, TMS, we have analyzed the data for
235,325 cells to identify 51,364 myeloid cells (MNPs and neutro-
phils) that expressed key myeloid markers (Lyz2, H2-Aa, Mki67,
S100a9, FIt3, Emr1, Ccr2, Cx3cr1, Sall1, Clec4f, Lyvel, ltgax,
Xcr1, Clecda4, Siglech, Ccr7; Figures 2A and 2D; STAR
Methods). These cells comprised a dedicated dataset, further
referred to as the mTMS dataset. While single-cell RNA-seq
data inevitably detect a smaller number of genes per cell
compared with bulk RNA-seq (Figure S4), the depth of the
mTMS dataset was sufficient to resolve classical cell popula-
tions. Specifically, unbiased clustering revealed 15 subpopula-
tions within the mTMS dataset (Figure 2B), which could be
readily identified as well-described populations of plasmacytoid
DCs, monocytes, Kupffer cells, microglia, and other cell types
(Figure 2C) based on previously described cell-specific markers
(Figure 2D). To our knowledge, we provide the first large-scale
curated annotation for the myeloid cells within TMS data. Corre-
sponding annotations are available for hands-on exploration in
the interactive single-cell browser (https://artyomovlab.wustl.
edu/immgen-met/, see TMS).
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GAM-clustering: Identification of metabolic
subnetworks in datasets with multiple conditions
Previously, we have shown that metabolic remodeling between
two conditions can be analyzed using network-based analysis
of their transcriptional profiles.®'? Specifically, the GAM algo-
rithm searches for optimal subnetworks within a global metabolic
network by weighing individual enzymes in accord with the differ-
ential expression of their genes and then solving the generalized
maximum-weight connected subgraph (GMWCS) problem.'*'®
While this approach cannot be directly translated to multi-sam-
ple/single-cell datasets such as ImmGen or TMS data, we were
able to reformulate the weighting scheme in a manner that allows
a GMWCS subnetwork search without explicit annotation of indi-
vidual samples or conditions. Here, we describe a GAM-clus-
tering method that allows the user to obtain metabolic subnet-
works enriched within the transcriptional data that include
many samples across multiple conditions.

In brief, GAM-clustering searches for connected metabolic
subnetworks that have most correlated expressions of individual
enzymes, resulting in a collection of subnetworks that follow
distinct transcriptional profiles. To achieve that, we first initialize
pattern-generating profiles by clustering all metabolic genes
based on their co-expression patterns (Figure 3; see STAR
Methods for details). For initialization of the multi-sample bulk
RNA-seq data, we use k-medoids clustering with k = 32 (see
Figures S5A and S5B for parameter sensitivity); any other gene
expression clustering approach can be used in this step since
downstream steps include significant regrouping and merging
of individual clusters. For initialization of single-cell RNA-seq
data, we first cluster the cells in the dataset into multiple clusters
(~100), which provides a sufficient balance between fine resolu-
tion of the data and minimal coarse graining needed to avoid
drop-out artifacts (see STAR Methods for details). Then, genes
are clustered using the same procedure as for multi-sample
bulk datasets.

Next, each enzyme is weighed with respect to the similarity of
its transcript’s profile to the average cluster/pattern profile, re-
sulting in multiple weights per gene that are specific for each
pattern (Figure 3). For any given pattern, weights of individual
enzymes serve as input to the GMWCS solver, resulting in the
individual subnetworks that are associated with each pattern. In-
dividual subnetworks are then refined in an iterative procedure of
updating the gene content for each pattern (see STAR Methods
for details). The final output presents a set of specific subnet-
works that reflect metabolic variability within a given transcrip-
tional dataset (Figure 3).

GAM-clustering improves recognition of metabolic
modules over unbiased clustering approaches
GAM-clustering utilizes preconceived knowledge about the
underlying metabolic network and therefore is expected to be
more powerful in terms of finding metabolically enriched mod-
ules. To evaluate this expectation, we compared GAM-clustering

Figure 2. TMS single-cell RNA-seq dataset
(A) Dataset preprocessing resulting in myeloid subset derivation.

(B-D) UMAP plot with natural clusters (B) and cell types (C) identified based on cell specific markers (D). NP, neutrophil; Mo, monocyte; prog, progenitor; DC,
dendritic cell; MF, macrophage; alvMF, alveolar macrophage; MG, microglia; KC, Kupffer cell; pDC, plasmacytoid dendritic cell; migDC, migratory dendritic cell.
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p value (p adjusted in the case of multi-
ple comparisons) (Figure S6A) and the
percentage of module’s covered genes
(Figure S6B). For these comparisons,

with commonly used unbiased clustering approaches such as
weighted gene co-expression network analysis (WGCNA) and
k-medoids (with Pearson correlation distance as a distance
measure), which both allow identifying clusters of genes with
high pairwise correlation. It is worth noting that the k-medoids
approach is used as a part of the GAM-clustering method for
generating the initial approximation (see STAR Methods for
more details). Unlike GAM-clustering, both WGCNA and k-me-
doids methods do not take into consideration the network struc-
ture of metabolic reactions, so we expect that GAM-clustering
improves recognition of metabolically enriched modules over
these clustering approaches. To this end, we clustered 1,837
metabolic genes in the ImmGen MNP OS dataset using GAM-
clustering, WGCNA, and k-medoids methods. As the k-medoids
method requires an explicit setting of the parameter k equal to the
number of produced clusters, k values were chosen to be equal to
10 and 20 to make the results comparable with 9 and 19 clusters

6 Cell Reports 42, 112046, February 28, 2023

modules obtained by the GAM-clustering
method demonstrate significantly higher
enrichment in selected metabolic path-
ways in both metrics (p value and number of overlapping genes)
compared with other clustering methods. Moreover, WGCNA
and k-medoids have identified many modules without significant
overlap with any KEGG metabolic pathway. This observation
confirms that modules found by GAM-clustering are more rele-
vant in terms of identifying metabolic features of the underlying
dataset. Note that the GAM-clustering method does not specif-
ically enforce enrichment in KEGG pathways but rather lever-
ages the global metabolic network structure. An additional
advantage of GAM-clustering is its interpretability, as modules
produced by GAM-clustering have moderate sizes from 5 to 39
genes and are composed of enzymes topologically closely
located on the metabolic network (Figure S6C).

Major metabolic modules within MNP subpopulations
The GAM-clustering method was applied to data from all baseline
(non-infected) samples and vyielded nine distinct metabolic
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Figure 4. Metabolic modules as a result of multi-sample metabolic network clustering of all myeloid cells but not inflammatory conditions

from ImmGen MNP OS dataset
(A) Heatmap representing samples hierarchically clustered based on averaged gene expression of each of obtained module (from lowest as blue to highest as
red). Euclidean distance is used as a clustering metric. YS MF, yolk sac macrophage; EB MF, embryoid body macrophage; alvMF, alveolar macrophage; SPM,

small peritoneal macrophage; MG, microglia; MF, macrophage; Mo, monocyte; DC, dendritic cell; pDC, plasmacytoid DC; migDC, migratory DC.
(B) Annotation of the obtained modules based on gene enrichment in KEGG and Reactome canonical pathways. Enrichment value is calculated as a percentage

of module genes contained in a particular pathway.

(C) Radar chart representation of metabolic modules within each metasample. Each individual sample is shown as a gray line, while mean of all samples inside
one metasample is shown as a colored line. Nine radii of the radar chart are devoted to the corresponding metabolic modules: 1 and 2: lipid metabolism; 3: FAS
pathway; 4: mtFASII pathway; 5: cholesterol synthesis; 6: glycolysis; 7: folate, serine, and nucleotide metabolism; 8: FAO and sphingolipid de novo synthesis; and
9: glycerophospholipid metabolism. Metasamples of EB MFs + alvMFs and alvMFs + SPM cells are shown at one chart as they are extremely close in their

metabolic characteristics.

modules (Figure 4A; Table S2). Hierarchical clustering of samples
based on the Euclidean distance metric in the space of these nine
metabolic modules showed that they could be broadly separated
based on the cell types: yolk sac macrophages, DCs, monocytes,
and macrophages from an adult organism. Broadly defined
mononuclear cell types are further split into several smaller meta-
samples: DCs subdivided into plasmacytoid DCs (pDCs), tissue-
specific DCs, and migratory DCs (migDCs) and macrophages
subdivided into microglia, adipose tissue macrophages, and a
large metasample of tissue-residing macrophages, as well as an
additional metasample composed of embryoid body, alveolar,

and small peritoneal macrophages (SPMs) that clustered
distinctly from other macrophage subpopulations (Figure 4A).
While obtained metabolic modules/subnetworks provide a
more accurate description of metabolic diversity compared with
canonically annotated pathways, the latter can be useful for
coarse-grained understanding of functionalities associated
with each subnetwork (Figure 4B). Indeed, pathway enrichment
analysis along with subnetwork gene content analysis indicate
that modules 1, 2, 8, and 9 represent various aspects of lipid
metabolism, and modules 3 and 4 represent two types of fatty
acid synthesis pathways. Finally, distinct modules represent
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Figure 5. Cell types shared between IG
MNP OS, IG MNP P1, and mTMS datasets
have similar patterns of metabolic modules
signatures

(A) Population memberships across the datasets:
prog, progenitor; SC, stem cell; MLP, multi-line-
age progenitor; MF YS, yolk sac macrophage; MF
EB, embryoid body macrophage; MF, macro-

o Q
B 50 § N phage; alvMF, alveolar macrophage; SPM, small
L5958 8s peritoneal macrophage; MG, microglia; KC,
IG MNP 0S Module 1: -1 Kupffer cell; Mo, monocyte; pDC, plasmacytoid
IG MNP P1 Lipid metabolism - 1 0.5 dendritic cell; DC, dendritic cell; migDC, migratory
mTMS Lo dendritic cell; NP, neutrophil (Table S3).
e Module 2: (B) Enrichment of individual metabolic modules
e M::;; ‘ .‘ Lipid metabolism - 2 across all datasets obtained during GAM-clus-
R Module 3: tering analysis of IG MNP OS dataset.
IG MNP P1 FAS pathway
mTMS
IG MNP 0S Module 4:
IG MNP P1 H B mtFASII pathway . . ] .
mTMS datasets. While overlap in profiled tissues
IG MNP 0S Module 5: is considered (Figure 1B), three datasets
kel Cholesterol metabolism are not identical in terms of populations
R Module 6: profiled. .We therefore grouped the
IG MNP P1 E Glycolysis samples into 19 general classes and
L ‘ compared the datasets by looking at the
D ﬁ Module 7: . . metabolic enrichments across these
IG MNP P1 Folate, serine & nucleotide metabolism . K
mTMS classes (Figure 5A; Table S3). To examine
IG MNP 0S Module 8: the robustness of metabolic signatures,
G MNP P1 FAO & sphingolipid de novo synthesis we computed enrichments of individual
mTMS . . .
P - Module 9: metabolic modules from .F|gure 4A in
IG MNP P1 Glycerophospholipid metabolism each of the 19 representatlve classes of
mTMS ImmGen MNP OS, ImmGen MNP P1,
and mTMS. Indeed, all dataset modules
demonstrated extremely similar enrich-
cholesterol synthesis metabolism- (module 5), glycolysis- ment profiles (Figure 5B): for instance, module 1 was enriched

(module 6), and nucleotide/folate metabolism-associated subnet-
works (module 7).

The underlying metabolic phenotypes for each metasample
can be represented using radar chart diagrams (Figure 4C):
each metasample is defined by a specific combination of meta-
bolic features that provides insights into metabolic wiring within
those populations. Here, the names of metasamples are given
based on the most common sample type inside the cluster. An
alternative view of the samples in the space of metabolic mod-
ules can be obtained using PCA that is built based on only 9
metabolic modules, which shows the distinct separation of indi-
vidual metasamples (Figure S6D). Consistently, when overlaid
with the PCA representation from Figure 1, individual metabolic
modules formed coherent patterns indicating the groups of
metabolically similar samples (Figure SE6E). Altogether, the meta-
bolic modules/subnetworks and corresponding metasamples
encapsulate metabolic variability across both cell types and their
tissues of residency. We next turn to examine the robustness of
the obtained subnetworks across three considered datasets.

Three independent large-scale datasets show
consistent metabolic features

We next considered if metabolic subnetworks derived from
ImmGen MNP OS data can be seen in the other two large-scale
datasets considered in this work—ImmGen MNP P1 and mTMS

8 Cell Reports 42, 112046, February 28, 2023

in microglia, adipose tissue macrophages, and Kupffer cells,
module 8 was enriched in alveolar macrophages, and module 5
was enriched in pDCs and migDCs across all datasets.

Importantly, independent application of the GAM-clustering
method to each of the datasets also revealed a very high
degree of similarity in obtained modules, highlighting the repro-
ducible and robust nature of the derived metabolic subnetworks
(Figure S7A).

Next, we examined individual subnetworks from the perspec-
tive of metabolic reactions covered and described both pub-
lished evidence of the corresponding metabolic activities and
validation data obtained in this project.

Subnetworks associated with early developmental
stages

Module 6 (Figures 6A, 6B, and 6D) is one of the modules most
distinctly associated with the yolk sac, embryoid body, alveolar,
and SPMs. This module, though unbiasedly derived by our
network analysis, closely matches the canonical glycolysis
pathway (Figure 6B), indicating strong transcriptional co-regula-
tion of these genes across the collected samples. Enrichment of
the glycolysis module in developmental cell types is consistent
with previously published data highlighting the importance of
glycolysis for stem-like and progenitor populations.?®~° This is
also consistent with the ImmGen MNP P1 and mTMS data
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(Figure 6D), where this module is also most enriched in progen-
itor populations. Interestingly, mTMS single-cell RNA-seq data
also demonstrate that this module is enriched in neutrophils, in
accord with the described high glycolytic rate in these cells.””
Module 7 (Figures 6A, 6C, and 6D) represents another set of
metabolic activities, including folate and serine metabolism and
the nucleotide biosynthesis pathway, typically associated with
the progenitor populations.?*’ In addition to the yolk sac mac-
rophages, this module is also enriched in some tissue-residing
DCs and pDCs (but not in migDCs). Indeed, the importance of
some of these pathways (e.g., folate metabolism) has been
demonstrated in DC functions such as antigen presentation.”®

Cholesterol synthesis pathway is enriched in and
functionally important for migDCs

Module 5 almost exclusively consists of enzymes from the
cholesterol metabolism/mevalonate synthesis pathway and is
enriched in embryoid body macrophages and some DC sub-
sets (Figures 6D-6F). Specifically, cholesterol synthesis ap-
pears to play a major role in migDCs, while it is less prominent
in pDCs and conventional tissue-residing DCs. Additionally,
with respect to potential tissue-specific imprinting, it is worth
noting that a small subset of tissue-residing macrophages,
comprised of epithelial and dermal macrophages, are enriched
in genes of the mevalonate/cholesterol synthesis pathway
(Figure 6E).

One of the main achievements in this work is the proof of the
feasibility of metabolite level predictions from gene expression.
For example, GAM-clustering analysis makes it possible to link
cell cholesterol levels with the expression of specific genes.
To illustrate this assertion, we analyzed cholesterol levels in
cell plasma membranes in migDCs and tissue DCs using flow
cytometry and perfringolysin O (PFO)-binding assay. Because
PFO binds selectively to cholesterol-rich domains of cell mem-
branes,? its binding level correlates with cholesterol expression
and membrane transport. Interestingly, PFO binding was signif-
icantly higher in migDCs migrating from the skin to skin-draining
lymph nodes (sdLNs) compared with tissue conventional DCs
from the spleen, liver, lungs, and perigonadal fat (Figures 6G,
6H, and S7B). This pattern of cholesterol synthesis revealed by
PFO binding was concordant with the increased expression of
genes from the cholesterol module in migDCs (Figure 6E),

Cell Reports

indicating the biological relevance of increased cholesterol
biogenesis in migDCs.

Enrichment of cholesterol metabolism in migDCs is consistent
with mechanistic data by Hauser and colleagues, who showed
that cellular cholesterol levels are directly linked to the ability of
DCs to oligomerize Ccr7 (a key marker of migDCs) and acquire
a migratory phenotype.®® Given the results of our analysis and
these published mechanistic connections, we evaluated mobili-
zation of DCs to LNs following epicutaneous application of fluo-
rescein isothiocyanate (FITC) in either control mice or mice
treated intraperitoneally (i.p.) with low-dose simvastatin, an in-
hibitor of 3-hydroxy-3-methylglutaryl (HMG) coenzyme A reduc-
tase (0.57 mg/kg/day), for 7 days (Figure 6l), which significantly
decreased cholesterol levels in their plasma (Figure 6J). dLNs
collected 18 h after FITC application demonstrated significantly
fewer migrated FITC*CD11c* DCs in the animals treated with
simvastatin, illustrating that in vivo interference with cholesterol
synthesis reduces DC migration to the LN, fitting with the
prominent expression of cholesterol synthesis genes in DCs
(Figure 6K). Surprisingly, simvastatin treatment increased mem-
brane cholesterol levels of migDCs isolated from dLNs (Fig-
ure S7C), suggesting a cell-level compensatory mechanism in
migDCs that counteracts systemic decrease in circulating
cholesterol.®’ Additionally, in this model, we cannot exclude an
indirect effect of cholesterol-synthesis inhibition on migDCs via
altered chemotactic effects in LNs. Nevertheless, these results
illustrate general validity of our analysis and highlights features
of the systemic metabolic perturbations, such as statin treat-
ments, that were not recognized previously.

Subnetworks associated with lipid metabolism

Modules 1 and 2 cover various aspects of lipid metabolism and
are strongly specific to macrophages relative to monocytes and
DCs (Figures 7A-7D). Due to general similarity of their patterns,
we merged the subnetworks for modules 1 and 2 in order to
make the interpretation easier (Figures 7C, 7D, S8A, and
S8B). The resulting subnetwork is centered around phospho-
lipid and arachidonic acid metabolism and includes parts of
the glutathione and cysteine/glutamate/glycine metabolism
pathways, as well as the N-acetylglucosamine pathway.
Indeed, arachidonic acid metabolism has been shown to play
major role in macrophages.***® Its metabolic flow is associated

Figure 6. Subnetworks associated with early developmental stages and DCs

(A and E) Heatmaps of module patterns along with the expression of some of its genes or genes related to the same biological subject (from lowest as blue to
highest as red). YS MF, yolk sac macrophage; EB MF, embryoid body macrophage; alvMF, alveolar macrophage; SPM, small peritoneal macrophage; MG,
microglia; MF, macrophage; Mo, monocyte; DC, dendritic cell; pDC, plasmacytoid DC; migDC, migratory DC.

(B, C, and F) Metabolic modules per se where edges of modules are attributed with color according to correlation of its enzyme’s gene expression to this particular
module pattern and thickness according to its score.

(D) Enrichment of modules genes expression (from lowest as blue to highest as red, transparent dots correspond to treated samples) across all three analyzed
datasets: IG MNP OS, IG MNP P1, and mTMS datasets.

(G and H) Flow cytometry analysis of DC staining with cholesterol-dependent cytolysin perfringolysin O (PFO) that indicates the level of cholesterol in the cell
membrane. (H) Mean fluorescence intensity (MFI) levels of PFO binding in DC subsets. n = 4 mice per group (2 male and 2 female); each dot indicates an
independent mouse. Statistics by one-way ANOVA with Dunnett’s multiple comparison test.

() DC migrations experiment scheme.

(J) Total plasma cholesterol levels in control and treated-with-simvastatin animals; n = 5 mice in each group; statistical analysis by unpaired two-tailed t test.
(K) Percentage of migrated FITC*CD11c* DCs in draining lymph nodes after FITC application in control and treated-with-simvastatin animals; n = 20 mice in each
group; statistical analysis by unpaired two-tailed t test. **** p < 0.0001.

(H, J, and K) Data shown as mean + standard error of the mean.
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Figure 7. Subnetworks associated with fatty acid synthesis and degradation

(A) Heatmaps of module patterns along with the expression of some of its genes (from lowest as blue to highest as red). YS MF, yolk sac macrophage; EB MF,
embryoid body macrophage; alvMF, alveolar macrophage; SPM, small peritoneal macrophage; MG, microglia; MF, macrophage; Mo, monocyte; DC, dendritic
cell; pDC, plasmacytoid DC; migDC, migratory DC.

(B) Enrichment of module gene expressions (from lowest as blue to highest as red, transparent dots correspond to treated samples) across all three analyzed
datasets: IG MNP OS, IG MNP P1, and mTMS datasets.

(C) Metabolic modules per se and corresponding schematic diagrams. Edges of modules are attributed with color according to correlation of its enzyme’s gene
expression to this particular module pattern and with thickness according to its score.

(D) Schematic representation of metabolic module.

(E) Schematic illustrating the design of the experiment with mouse peritoneal (Per) and alveolar (Alv) macrophages (M®s) treated with BSO for 12 h to inhibit GSH
synthesis followed by activation by zymosan for 4 h.

(F) Secretion levels of PGE2; n = 3 mice per group; statistics by unpaired two-tailed t test. N.S., non-significant (p > 0.05).

(G) Secretion levels of cysteinyl leukotrienes; n = 3 mice per group; statistics by unpaired two-tailed t test.

(F and G) Data shown as mean + standard error of the mean.

with utilization of phospholipids to produce two major classes
of arachidonic acid derivatives: leukotrienes and prostaglan-

To validate the biological role of this metabolic module in tissue
macrophages, we sorted mouse peritoneal and lung alveolar

dins. Unlike prostaglandins, cysteinyl leukotriene production
(C4 and downstream) requires glutathione as an intermediate
metabolite, thus involving the glycine, cysteine, and glutamate
pathways.*

macrophages (Figure S8C), followed by inhibiting glutathione
synthesis using buthionine sulfoximine (BSO), an inhibitor of
gamma-glutamylcysteine synthase (Figure 7E). Production of
prostaglandin E2 (PGE2) is the glutathione-independent pathway
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of arachidonic acid derivative metabolism. In keeping with this
metabolic model, glutathione depletion did not alter PGE2 secre-
tion by peritoneal and alveolar macrophages activated with
zymosan, a TLR2 and Dectin-1 agonist (Figure 7F). In contrast,
as predicted by increased transcription of genes connecting
glutathione synthesis to cysteinyl leukotriene production in tissue
macrophages, glutathione depletion significantly reduced cys-
teinyl leukotriene secretion from zymosan-activated peritoneal
and alveolar macrophages (Figure 7G). These results show that
tissue-resident macrophages profoundly depend on glutathione
synthesis to efficiently secret cysteinyl leukotriene, suggesting
the role of glutathione-arachidonic acid metabolism as a key
regulator of the inflammatory function of tissue macrophages.
Furthermore, our analysis picked up a distinct subnetwork of co-
expressed genes from the glycerophospholipid pathway (mod-
ule 9; see Figures S8D-S8F) that was particularly highly expressed
in the microglial populations (Figure S8D). This module included
enzymes such as Dgkd and Lpcat2, suggesting that their role in mi-
croglia might be of particular interest.>>*° As Figure SSE shows,
these observations were common across all three datasets.

Subnetworks associated with fatty acid synthesis and
degradation
Our analysis identified three distinct subnetworks associated
with the modulation of fatty acids in terms of both their synthesis
(modules 3 and 4) and fatty acid oxidation (module 8) (Figure S9).

The structure of module 3 (Figures S9A-S9C) reflects the en-
ergetic demands of the fatty acid synthesis and includes por-
tions of the pentose phosphate pathway and the TCA cycle,
where citrate synthase (Cs) is one of the most pattern-specific
genes within this subnetwork. Overall, module 3 is highly en-
riched in DC populations but not in macrophage/monocyte
samples, underscoring another facet of metabolic divergence
between these cell types. The functional importance of this
module for DCs is evident from the fact that a blockade of fatty
acid synthase (Fasn)-mediated fatty acid synthesis markedly
and selectively decreases dendropoiesis both in mice and in
humans.®”%¢

Interestingly, the pattern of module 8 (Figures S9A, S9B, and
S9E) was directly opposite to module 3 and was strongly en-
riched among various tissue macrophages, particularly in alve-
olar macrophages. Metabolic flow encompassed by this network
includes enzymes such as Lipa (LAL), which is responsible for
lysosomal lipolysis and the initial breakdown of intracellular lipid
storage. This breakdown is followed by mitochondrial import of
cytosolic fatty acids via carnitine transport shuttle (Cpt1a) and
their subsequent breakdown via classical fatty acid oxidation
(FAO) steps (Acox1, Hadha, etc.)*®‘° (Figure S9E). The Lipa
expression pattern is one of the most specific for module 8, indi-
cating its potential importance for macrophages. Indeed, there
are studies highlighting the importance of Lipa for macrophage
function, especially in the context of anti-inflammatory polariza-
tion.*! Furthermore, Lipa is also likely to be important for human
macrophages, as mutations in the LIPA gene of patients with
cholesteryl ester storage disease (CESD) cause aberrant choles-
terol accumulation in tissue macrophages.*>** Enrichment of
FAO-related module 8 in alveolar macrophages is particularly
interesting as it is distinctly reproduced in ImmGen MNP P1
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and mTMS data. The importance of this pathway in the lungs
is intriguing and warrants further detailed investigations.

DISCUSSION

Here, we introduced a dataset covering multiple subpopulations
of DCs, monocytes, and macrophages from diverse tissues—the
result of ImmGen MNP OS profiling effort. We focused on under-
standing potential metabolic variability among collected myeloid
cell subpopulations and co-analyzed it in the context of two
other large-scale profiling efforts —ImmGen P1 and TMS. Using
an algorithmic approach (GAM-clustering), we have defined 9
metabolic subnetworks encapsulating the major metabolic dif-
ferences that were highly reproducible across three studied
datasets. Our analysis demonstrated that specific metabolic
features could be attributed to cell populations and specific tis-
sues of residence for distinct populations (e.g., adipose tissue
macrophages).

Our analysis suggested that major metabolic differences be-
tween baseline (unactivated) macrophages and DCs are (1)
levels of Fasn-mediated fatty acid synthesis enriched in DCs’
transcriptional profiles and (2) regulation of arachidonic acid
metabolism, which is enriched in macrophages. Among various
tissue-residing cell types, it was apparent that microglia and
CNS macrophages have a very distinct phenotype relative to
other populations: based on their transcriptional profile, they
appear more metabolically quiescent, yet a particular lipid-asso-
ciated module (module 9) was enriched in these cells, with key
genes being Lpcat2, Dgkd, and Csd1, which are involved in
phospholipid metabolism and the generation of bioactive lipids
from phospholipid precursors. Of interest, hierarchical metabolic
clustering of macrophages places adipose-tissue macrophages
and microglia closer than another group of diverse tissue
macrophages. Residence in a lipid-rich environment made lipids
an integral and very important part of microglia phenotype and
functions regulation, which was shown in a wide range of
publications.**™” Perturbations in lipid substrate utilization can
also affect microglia’s phagocytic and inflammatory statuses,
shaping disease-specific microglia features.*¢=°°

Indeed, distinct patterns in lipid metabolism, including path-
ways related to cholesterol, were also apparent in DCs versus
macrophages. Macrophages’ capacity to handle cholesterol
and store it in esterified form to generate so-called macrophage
foam cells is a well-established theme in cardiovascular research
and inflammatory disease.®'*? Our data reveal that expression of
Lipa, an enzyme involved in breaking down cholesterol esters in
the lysosome and whose mutation is associated with lysosomal
storage diseases, is a widespread characteristic of tissue macro-
phages but not DCs. On the contrary, we observed that pathways
active in cholesterol synthesis are very low in all tissue macro-
phages but elevated in monocytes and DCs, especially migDCs.

Thus, it appears as though macrophages are oriented toward
handling exogenously derived cholesterol, such as that which
may be derived from engulfment of large amounts of phagocytic
cargo, whereas DCs are oppositely programmed to synthesize
their own cholesterol and associated intermediates. Tissue
macrophages are especially incapable of migrating to distal sites
like LNs, a major functional distinction from DCs. We showed
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that transcriptional activity of cholesterol biogenesis genes and
membrane cholesterol levels was increased in migDC compared
with tissue DC subsets, suggesting its important role in DC
migration from tissues into LNs. Moreover, we validated the
importance of the cholesterol synthesis pathway for migDCs
in vivo by using pharmacological interventions with simvastatin.
However, our results show that membrane cholesterol levels in
migDCs were increased in the context of circulating cholesterol
lowering, indicating that further studies are needed to under-
stand better the interplay between systemic and cellular choles-
terol metabolism and DC migration.

Finally, we predicted and validated experimentally the
elevated activity of metabolic pathways connecting glutathione
synthesis and the production of cysteinyl leukotrienes in tissue
macrophages. Cysteinyl leukotrienes are established mediators
of bronchial asthma.®® Dectin-2 activation induces cysteinyl
leukotrienes synthesis in lung phagocytes and increases Th2 im-
munity.>* Our results suggest a role of glutathione-mediated
metabolic fine-tuning of Th2 immune responses through the cys-
teinyl leukotriene axis in alveolar macrophages.

Altogether, our analysis underscores metabolic variability
across cell types and tissues and highlights the need to under-
stand metabolic wiring not only in terms of cellular metabolism
but also at the level of whole-body communication networks
(see, e.g., Castillo-Armengol and colleagues® and Droujinine
and Perrimon®®). Furthermore, since direct metabolic profiling
is not feasible or sufficiently accurate now, the development of
ex vivo metabolomics profiling technologies® ~° suggests that
direct insight into metabolism of various myeloid subpopulations
through in vivo metabolomics techniques will be possible in the
future.

Lastly, there are several aspects of this approach that can be
further improved in the future. First, the current graph structure
reflects the connectivity of a metabolic network but does not
take into account explicit directionalities of specific reactions.
This is a consequence of the use of the underlying path-solving
algorithm, which works on undirected graphs'® and can poten-
tially impede interpretability of the results. Furthermore, the con-
nectivity of the current network is based on the existence of
metabolic reactions between individual metabolites and does
not explicitly take into account transformation of individual
atoms (carbons, nitrogens, etc.), akin to what can be measure
in metabolic flux analysis. This can be addressed by introducing
a more refined, atomistic structure of the metabolic network, as
was recently done in the Shiny GATOM approach.®° Finally, uti-
lization of different clustering metrics (e.g., silhouette) may be
added to assess the quality of derived modules and therefore
improve clustering.

Limitations of the study

Even though gene expression might be considered a reliable
proxy for metabolic processes exploration, it provides an indi-
rect estimate of cellular metabolism. Mass-spectrometry-based
single-cell metabolomics, 13C-label-tracing, extracellular flux
analysis, and protein data, as well as metabolic enzymes activity,
are still valuable and necessary supplements to bulk and single-
cell data to provide the full picture. However, no coherent data of
this kind were available for the analyzed datasets.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

CD45 BUV563 clone 30-F11
CD45 APC-Cy?7 clone 30-F11
I-A/I-E BUV496 clone M5/114.15.2

BD Biosciences
Biolegend
BD Biosciences

Cat#612924; RRID:AB_2870209
Cat#103116; RRID:AB_312981
Cat#750281; RRID:AB_2874472

CD11c PE-Cy7 clone N418 Biolegend Cat#117318; RRID:AB_493568
CD11c PE clone N418 Biolegend Cat#117308; RRID:AB_313777
CD3e AF488 clone 145-2C11 Biolegend Cat#100321; RRID:AB_389300
CD19 FITC clone 1D3/CD19 Biolegend Cat#152404; RRID:AB_2629813
NK1.1 AF488 clone PK136 Biolegend Cat#108718; RRID:AB_493183
TER-119 AF488 clone TER-119 Biolegend Cat#116215; RRID:AB_493402
CD64 APC clone X54-5/7.1 Biolegend Cat#139306; RRID:AB_11219391
F4/80 AF488 clone BM8 Biolegend Cat#123120; RRID:AB_893479
F4/80 PE clone BM8 Biolegend Cat#123110; RRID:AB_893486
CD11b BV421 clone M1/70 Biolegend Cat#101236; RRID:AB_11203704
anti-Perfringolysin O rabbit antibody Abcam Cat#ab225685

Goat anti-Rabbit IgG (H + L) AF647 Thermofisher Cat#A-21245; RRID:AB_141775
Mouse TruStain FcX (anti-mouse CD16/CD32, Biolegend Cat#101320; RRID:AB_1574975
clone 93) antibody

Chemicals, peptides, and recombinant proteins

LIVE/DEAD Fixable Aqua Dead Cell Stain Kit Thermofisher Cat#L.34957

Collagenase D Sigma Cat#11088882001
Perfringolysin O (PFO) from Clostridium perfringens Cusabio Cat#CSB-EP314820CMB
Fluorescein isothiocyanate (FITC) Sigma Cat#F7250

Simvastatin Sigma Cat#S6196
L-Buthionine-sulfoximine (BSO) Sigma Cat#B2515

Zymosan Invivogen Catttlrl-zyn

Critical commercial assays

Cholesterol Quantitation Kit Sigma Cat#MAK043

PGE2 ELISA kits Enzo Cat#ADI-900-001

Cysteinyl leukotriene ELISA kits Enzo Cat#ADI-900-070

RPMI 1640 Medium Thermofisher Cat#11875093

Deposited data

ImmGen ULI: OpenSource Mononuclear Phagocytes This paper GEO: GSE122108

Project (raw and processed data)
ImmGen Microarray Phase 1 (raw and processed data)
Tabuls Muris Senis (raw and processed data)

Gautier et al.®
Tabula Muris Consortium"”

GEO: GSE15907

GEO: GSE149590; https://s3.console.aws.amazon.
com/s3/buckets/czb-tabula-muris-senis/;
https://figshare.com/articles/dataset/Processed_
files_to_use_with_scanpy_/8273102/2

Experimental models: Cell lines

Mouse peritoneal primary macrophages This paper NA

Mouse lung alveolar primary macrophages This paper NA
Experimental models: Organisms/strains

Mouse: wild-type C57BL/6J mice Jackson Laboratory Strain#000664

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

GAM-clustering This paper GitHub: https://github.com/artyomovlab/
ImmGenOpenSource
https://doi.org/10.5281/zenodo.7492657

GMWCS-solver Loboda et al."® https://cran.r-project.org/web/packages/
mwcsr

FlowJo software v10.2 BD https://www.flowjo.com/

Prism v9.4.1 Graphpad Software https://www.graphpad.com/scientific-
software/prism/

Other

Resource website: Hands-on interactive browser This paper https://artyomovlab.wustl.edu/immgen-

for gene expression exploration both for met/

ImmGens and Tabula Muris Senis datasets

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Maxim N.
Artyomov (martyomov@wustl.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

® The ImmGen MNP Open Source RNA sequencing dataset generated during this study has been deposited at GEO repository
(GSE122108) and is publicly available as of the date of publication. This paper also analyzes existing, publicly available data:
The ImmGen Phase 1 dataset (GSE15907) and The Tabula Muris Senis dataset (GSE149590). All accession numbers are also
listed in the key resources table.

e All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOI is listed in the key
resources table.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse strains

Female and male C57BL/6J mice of 6-week old were purchased from the Jackson Laboratory and housed in specific-pathogen-free
animal facility at Washington University in St. Louis during two weeks before the start of experiments. Animal protocols used in this
study were approved by the Institutional Animal Care and Use Committee at Washington University in St. Louis. Mice were
co-housed and randomized before creating body-weight-balanced groups to treat with simvastatin or PBS. Mice used for flow
cytometry analyses were euthanized at 10-11 week of age after 8 h fasting. Investigators were not blinded to experimental groups.
No animals were excluded from analysis.

Primary cell culture

Mouse primary macrophages were sorted from peritoneal cavity fluid (peritoneal macrophages, CD45*CD11b*F4/80*CD64") and
lung tissue (alveolar macrophages, CD45*CD11b F4/80"CD64%). 5 x 10 cells were plated in 0.2 mL of RPMI media +10% FCS
in the presence of 2 mM glutamine and incubated with or without 0.5 mM buthionine sulfoximine (BSO) for 12 h followed by activation
with zymosan for additional 4 h. Supernatant media were collected and used for ELISA assays.

METHOD DETAILS
RNA-sequencing

Bulk RNA-sequencing data were collected from 16 labs. All of the mice used in this study were handled in accordance with IACUC-
approved protocols. Each lab, in addition to their own samples, sorted a standard peritoneal cavity macrophage population
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(CD115*B220°F4/80"MHCII™) for comparability between all labs. Samples were profiled using ImmGen’s ultra low input (ULI)
sequencing pipeline, in batches of 90-96 samples. All samples were sequenced in two separate NextSeg500 runs and combined
for increased depth (expect 8-12 10° reads per sample).

RNA-sequencing data processing

Following sequencing, ImmGen MNP OS raw reads were aligned with STAR to the mouse genome assembly mm10, and assigned to
specific genes using the GENCODE vM12 annotation. Aligned reads were quantified using featureCounts. Samples that did not pass
the QC threshold for read counts (<2 million reads) were dropped for further analysis. Pearson correlation was calculated between
biological replicates to exclude samples that did not pass a threshold of 0.9 correlation coefficient. For the cell populations with three
biological replicates, of which one did not agree with the other two, the suspect one was removed from the dataset. In case cell pop-
ulations had only two replicates, both were removed. Samples with Jchain>1,000 and Ighm>10,000 were set asides as well as sam-
ples with high B cell, erythrocytes and fibroblasts transcripts. Peritoneal cavity samples were downsampled to keep consistency
across samples number in all tissues. All gene counts were imported into the R/Bioconductor package EdgeR and TMM normaliza-
tion size factors were calculated to adjust for differences in library size across all samples. Feature not expressed in at least three
samples above one count-per-million were excluded from further analysis and TMM size factors were recalculated to create effective
TMM size factors. The effective TMM size factors and the matrix of counts were then imported into the R/Bioconductor package
Limma and weighted likelihoods based on the observed mean-variance relationship of every gene and sample were then calculated
for all samples. Performance of the samples was assessed with a Pearson correlation matrix and multidimensional scaling plots. As
GAM-clustering method itself does not perform any counts normalizations or batch corrections, InmGen MNP OS data were as-
sessed for presence of any batch effect by PCA plots.

Single-cell RNA-seq data processing

Filtered h5ad file for Droplet subset was downloaded from the official Tabula Muris Senis repository (https://figshare.com/projects/
Tabula_Muris_Senis/64982). The data were processed by the standard Seurat pipeline and resulted in 235,325 cells organised in
distinct clusters detectable on TSNE/UMAP plots. Next, cells annotated with names corresponding to myeloid populations were
picked out. A differential gene expression analysis between these cells and all others was performed. Top 250 of these differentially
expressed genes were used as a “myeloid signature genes” (Table S4) to identify clusters that most express them and thus corre-
spond to myeloid cells. Cell content of these clusters was used to create a subset of 60,844 cells. Obtained dataset was analyzed by
non-myeloid marker genes to detect and remove cell doublets with T-cells, B-cells, NK-cells and fibroblasts (Cd3d, Cd3e, Cd3g,
Cd4, Cd8a, Cd19, Cd79a, Tnfrsf17, Cd22, Nkg7, Gnly, Col6a1, Col6a2, Col6a3). Finally, dataset of 51,364 cells was obtained and
used in the further GAM-clustering analysis.

GAM-clustering

The algorithm for multisample metabolic network clustering (hereinafter referred to as GAM-clustering) identifies modules describing
regulation of metabolism and is based on the previously developed GAM method.'? GAM-clustering extends the GAM method by
setting the task to find not one but several metabolic modules (connected subnetworks of metabolic network) with the condition
that each of these modules should contain as many metabolic genes with high pairwise correlation of their expression as possible.

The metabolic network used in the current analysis is presented as a graph where vertices are metabolites and edges are KEGG
database reactions which are mapped with catalyzing them enzymes and corresponding genes. This network is an undirected pseu-
dograph. Totally, network contains all possible biological reactions documented in KEGG database. Reactions specific for meta-
bolism of Mus musculus were selected based on gene annotation provided by KEGG and Bioconductor (https://bioconductor.
org/packages/org.Mm.eg.db/).%’

Expression matrix given as an input for GAM-clustering method has rows corresponding to genes and columns corresponding to
the sequenced samples. GAM-clustering does not consider column annotations during the module deriving process.

There are two major parameters that control the number and the sizes of the final modules: k — the initial number of gene clusters,
and base - the value which is used during edge weights calculation thereby enforcing the certain level of gene expressions correlation
in the module. The initial approximation of the final set of modules is carried out by k-medoids clustering of a gene expression matrix
for all metabolic genes of a dataset with some arbitrary k (here we used k = 32, see Statistical analysis of the GAM-clustering method
for details and Figure S5A). Each cluster forms a corresponding expression pattern which can be determined as averaged value of its
z-normalized gene expression values. The metabolic network used for further analysis is presented as a graph where vertices are
metabolites and edges are KEGG database reactions which are mapped with catalyzing them enzymes and corresponding genes.
For each particular pattern edges of this graph are scored (weighted) based on their gene expression similarity with this pattern and
dissimilarity with other patterns.

For each case of weighted graph a connected subgraph of maximal weight is found by a signal GMWCS (generalized maximum
weight connected subgraph) solver'®:%? (https://cran.r-project.org/web/packages/mwcsr/) and is called a metabolic module. This
solver uses the IBM ILOG CPLEX library, which efficiently performs many iterations of this method in a reasonable amount of
time. Then, each pattern is updated by replacing it with an averaged gene expression of the module’s edges with a positive score.
If the pattern is changed, a new score set is calculated and a new iteration is performed. Before moving to the next iteration, small
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graphs are eliminated from further analysis so that there are no graphs with less than five edges and diameter less than four in the
output solution. The algorithm continues until the pattern content stops changing.

For the selection of the optimal set of modules we have assessed a range of module characteristics, for example, mean pairwise
correlation of module edges (i.e. genes) and the number of annotating pathways (see more details in Statistical analysis of the
GAM-clustering method). Altogether, the most cohesive and informative modules were obtained using k = 32 and base = 0.4
(Figure S5B), which we decided to use for the consecutive analysis.

GAM-clustering method is applicable not to bulk RNA-seq data only but to single-cell RNA-seq data as well. Single-cell data need
an additional step of preprocessing implying transformation of individual cells into technical samples. This is performed based on
averaging gene expressions of individual cells inside high resolution clusters. In case of single-cell RNAseq data, among final meta-
bolic modules might occur ones that do not cover all biological replicas of cell types they are specific for. These modules are elim-
inated from the final result.

Thus, the final metabolic modules are subnetworks of the overall metabolic network that contain a set of closely located genes with
high correlation of their expression profile across all samples.

GAM-clustering method is available at https://github.com/artyomoviab/ImmGenOpenSource.

Staining cells with perfringolysin O (PFO)

The cell suspension was prepared from collagenase D-treated and dissociated spleen, skin-draining lymph nodes, perigonadal white
adipose tissue, lungs, and liver of wild-type 8-week-old male and female C57BL/6J mice (Jackson Labs).?® The cells were stained
with Aqua Live/Dead kit followed by staining with 10 mg/mL of Perfringolysin O (PFO) from Clostridium perfringens (Cusabio # CSB-
EP314820CMB) in PBS at +25°C for 30 min, washed 3 times, and stained with an antibody cocktail (CD45 BUV563 clone 30-F11,
I-A/I-E BUV496 clone M5/114.15.2 from BD, CD11c PE-Cy7 clone N418, CD3e AF488 clone 145-2C11, CD19 FITC clone 1D3/
CD19, NK1.1 AF488 clone PK136, TER-119 AF488 clone TER-119, F4/80 AF488 clone BM8 from BiolLegend, anti-Perfringolysin
O rabbit antibody [Abcam # ab225685] and Goat anti-Rabbit IgG (H + L) Highly Cross-Adsorbed Secondary Antibody AF647
[Thermofisher # A-21245]) and Fc-block for 30 min on ice. The cells were analyzed by flow cytometry using FACSymphony A3
Cell Analyzer and FlowdJo software.

DC migration assay

Epicutaneous application of Fluorescein isothiocyanate (FITC) to study DC migration was performed on three areas of each side of
the mouse back skin.®* Both females and males were studied. Briefly, FITC (8 mg/mL) was dissolved in acetone and dibutyl phthalate
and applied in 25-pL aliquots to each site. Recovered lymph nodes, 18 h later, were teased and digested in 2.68 mg/mL collagenase
D for 25 minat 37°C. Then, 100 uL 100 mM EDTA was added for 5 min, and cells were passed through a 100-um cell strainer, washed,
counted, and stained for flow cytometry after counterlabeling with PE conjugated anti-CD11c (Biolegend). Prior to FITC painting,
some cohorts of mice were treated with simvastatin i.p. at 0.57 mg/kg/day for 7 days, as this protocol was previously shown to signif-
icantly block monocyte diapedesis from the bloodstream.®® Control mice received vehicle i.p. For plasma cholesterol level measure-
ments, blood was collected from the retro-orbital venous sinus in EDTA-coated tubes from mice fasted for 6 h and anesthetized with
isoflurane. Plasma was separated by centrifugation at 3000 RPM at +4°C for 10 min. Total plasma cholesterol levels were measured
using a colorimetric Cholesterol Quantitation Kit (Sigma #MAK043).

Analysis of arachidonic acid metabolite secretion by primary mouse macrophages

The cell suspension was prepared from the lungs and peritoneal fluid of wild-type 8-week-old male C57BL/6J mice (Jackson Labs).%®
The cells were stained with an antibody cocktail (CD45 APC/Cy7 clone 30-F11, CD64 APC clone X54-5/7.1, F4/80 PE clone BM8,
CD11b BV421 clone M1/70 from Biolegend) and Fc-block on ice for 15 min followed by sorting of large peritoneal macrophages
and lung alveolar macrophages using BD FACSAria Il Cell Sorter. 5 x 10* macrophages were incubated in 100 mL of
RPMI +10% FCS in 96-well plates in the presence of 0.5 mM buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, for 12 h
followed by activation with 5 x 10° particles per ml of zymosan (Invivogen) for 4 h. PGE2 and cysteinyl leukotrienes were measured
in cell supernatants using ELISA kits.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of the biological data

No statistical method was used to predetermine the sample size. For comparison of groups, non-paired two-tailed t test was used. In
case of multiple comparisons, p values were adjusted using the Dunnett’s correction. Statistical analyses were performed with Prism
v9.4.1 (GraphPad Software). Data are shown as means + standard errors of mean. p < 0.05 was considered statistically significant.

Statistical analysis of the GAM-clustering method

The initial approximation of the final metabolic modules is carried out by k-medoids clustering of the expression matrix of all meta-
bolic genes of the dataset with some arbitrary parameter k (here used k = 32). Each cluster forms a corresponding expression pattern
which can be determined as the averaged value of z-normalized gene expression values in this cluster. Then, a gene’s score relative
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to each cluster is calculated according to formula (4). This score represents similarity of gene expression with the module’s pattern (1)
and dissimilarity with other modules’ patterns (3). Formally, score is defined as follows:

d(gi,¢;) = 1 — cor(gi,cj) (Equation 1)

d(gi,co) =base (Equation 2)

d'(gi,¢) = k#_f}Z"EIfZOMJ(d(Qan)) (Equation 3)
d(gfvc/) .

score(gj,c;) = — log———~ Equation 4

(@) gd’(guC/) Eq )

where gi— expression of the i-th gene, i e (1,N);

¢j— pattern of the j-th cluster, j e (1,M); c,— pattern of the j-th cluster or the fake pattern, je (0,M); co- the fake pattern;

d - distance to the pattern the score is being calculated for;

d’ — distance to the pattern which this gene has the most correlation with.

(all other patterns are considered except the pattern the score is being calculated for);

base - distance to the fake pattern.

The following approach allows to avoid collapsing similar modules with enough supporting genes into one module as only one pos-
itive score per gene is possible.

Thus, a set of networks where each edge is weighted according to its gene score is formed. For each pattern a connected subgraph
of maximal weight is found. These subgraphs are called metabolic modules. This procedure is carried out by an SGMWCS (signal
generalized maximum weight connected subgraph) solver'®*° (https://cran.r-project.org/web/packages/mwcsr) which uses the
IBM ILOG CPLEX library that efficiently performs many iterations of this method in a reasonable amount of time. Thus, an iterative
procedure of metabolic modules refinement is performed in a process of updating each of the patterns by replacing it with an aver-
aged gene expression of the module’s edges with a positive score.

One of the important parts in the procedure of updating the modules is the question when to stop. To answer this question, the
difference between the values of the patterns of the current iteration and the values of the patterns of all previous iterations, in which
there were the same number of modules, is found (this is done to avoid missing the situation when new iteration comes to the
condition close to one that once already has occurred). If difference is large (>0.01) which means that pattern content is quite
changed, a new score set is calculated and a new iteration is performed. If the difference between patterns is small enough
(<0.01), but non-informative (having less than 5 edges and/or diameter less than 4) modules are still presented in the output, the
less informative (most correlated with any other graph) module is eliminated from the further analysis. After removing one module,
the weights are recalculated and a new iteration of refinement is performed. The final result is a set of specific subnetworks that re-
flects metabolic variability among the samples of the analyzed transcriptome data.

The GAM-clustering method has two parameters: the number of initial clusters k (here used k = 32) and the distance to the fake
pattern base (here used base = 0.4). They affect the number, the size, intramodular gene correlation, and the number of unique anno-
tating pathways of the resulting modules (Figures S5A and S5B).

To explore the influence of k value to number of final modules the model data were designed. They imitate experiment with complex
design (15, 18 or 21 samples) where several (5, 10 or 15) modules are active each in a particular subset of samples. All combinations
of these data were analyzed by the GAM-clustering method and the following output features were calculated: number of final mod-
ules found by method, number of iterations performed and time elapsed during the analysis (Figure S5A). As these data are modeled,
we know how many modules are there in each experiment (dashed line in Figure S5A) and therefore we can evaluate how the number
of found modules relates to the number of real modules. In most cases GAM-clustering found approximately all real modules when
launched with the value k several times greater that the number of real modules. Moreover, a further increase of k does not lead to
results improvement, but nonlinearly increases the number of iterations and the working time of the method. Thus, it is reasonable to
detect some advisable k value so that user gets approximately full set of modules and does not spend to much time for the analysis.
As in real data we do not know the number of real modules, there is a heuristic approach that allows to find some k based on the
characteristics of the input data. This approach is based on elbow method that calculates the total within-cluster sum of square
(wss) for each k. For expression data there is no pronounced inflection point where wss is sharply stops decreasing (usually this point
is considered equal to the optimal number of clusters). Here, we used point where the slope of the wss curve is 50% as steep as its
steepest slope. Corresponding to this point abscissa value was considered as k value.

The strategy for selecting optimal value of base parameter was formed on the basis of real data analysis, since it requires consid-
eration of the biological meaning of the obtained modules. At the beginning of the analysis, the GAM-clustering algorithm produces
some recommended value of k (see previous paragraph). For this k, we can calculate the average dissimilarity (distance) between the
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observations of the initial cluster and this cluster’s medoid over all clusters. Obtained value is proposed by the method as the rec-
ommended value of the base parameter. For the ImmGen MNP OS data analyzed in this study, there were 32 initial clusters proposed
and the recommended base value was equal to 0.4. This base value was determined to be optimal during the comparative study of
the results obtained with other different base values (Figure S5B). The optimality criterion included the calculation of the following
characteristics of the output modules: their number, size, average correlation of edges, the number of unique annotating paths,
the number of annotating paths corresponding to one cluster only, the percentage of genes with negative score, the percentage
of genes with negative correlation, the percentage of genes with correlation less than 1 — base. Noticeably, such characteristics
as the average number of genes in the module, the average percentage of genes with negative score and correlation, as well as
with a correlation less than 1 — base, are minimal for the recommended base value (0.4). This indicates that the modules obtained
for base = 0.4 have good internal correlation, as well as compactness. Modules obtained with a lower base value also show good
internal correlation, but they are characterized by the loss of a large number of significant modules. It is worth noting that for
base = 0.2 no modules were found. Modules obtained with larger base values, on the contrary, are annotated with a bigger number
of unique canonical pathways, however, many of these pathways relate to the same biochemical processes. Moreover, these mod-
ules are characterized by lower rates of intramodular correlation.

Even though default values of k and base parameters are proposed to user before the analysis based on the input data properties,
there is still an opportunity for user to select custom values of these parameters. Nevertheless, the general recommendation is to
stick with the proposed value of the base parameter, since its changes lead to the strong alterations in the size and content of the
final modules.

ADDITIONAL RESOURCES
The interactive browser for gene expression exploration of ImnmGen MNP OS, Phase 1 and Tabula Muris Senis datasets analyzed in

this study was created.
Description: https://artyomovlab.wustl.edu/immgen-met/.
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