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SUMMARY
The diversity of mononuclear phagocyte (MNP) subpopulations across tissues is one of the key physiological
characteristics of the immune system. Here, we focus on understanding the metabolic variability of MNPs
through metabolic network analysis applied to three large-scale transcriptional datasets: we introduce (1)
an ImmGen MNP open-source dataset of 337 samples across 26 tissues; (2) a myeloid subset of ImmGen
Phase I dataset (202 MNP samples); and (3) a myeloid mouse single-cell RNA sequencing (scRNA-seq) data-
set (51,364 cells) assembled based on Tabula Muris Senis. To analyze such large-scale datasets, we develop
a network-based computational approach, genes and metabolites (GAM) clustering, for unbiased identifica-
tion of the key metabolic subnetworks based on transcriptional profiles. We define 9 metabolic subnetworks
that encapsulate the metabolic differences within MNP from 38 different tissues. Obtained modules reveal
that cholesterol synthesis appears particularly active within the migratory dendritic cells, while glutathione
synthesis is essential for cysteinyl leukotriene production by peritoneal and lung macrophages.
INTRODUCTION

The diversity of the myeloid cells across different tissues is truly

astonishing, both in function and in their developmental trajec-
C
This is an open access article under the CC BY-N
tory.1,2 An additional dimension of this diversity is manifested

by the metabolic characteristics of the individual mononuclear

phagocytes, which can vary significantly based on the cell type

and its location.3–5 At present, direct metabolomic profiling of
ell Reports 42, 112046, February 28, 2023 ª 2023 The Author(s). 1
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tissue-residing subpopulations is not feasible, as the process of

ex vivo sorting can be lengthy and cause significant metabolic

perturbations.6,7 However, RNA levels are significantly more sta-

ble in the sorting process and can serve as a reasonably reliable

proxy for activities of metabolic pathways.8,9 In this work, we

focus on understanding metabolic variability across phagocytic

subpopulations through integrated examination of several

large-scale datasets that transcriptionally profiled subsets of

myeloid cells (Figures 1A–1C). Specifically, we have assembled

a compendium of three datasets, including the public release

of the dataset generated by the mononuclear phagocyte open-

source (MNP OS) ImmGen project.10

The ImmGen MNP OS dataset totals 337 samples and pro-

vides a source of information about individual cell subpopula-

tions (Figures 1D and 1E). It extends the previous ImmGen effort

that included 202 samples of various MNPs, also analyzed in this

study (Figures 1F and 1G). In addition to an increased number of

mature cell populations from adult mice (monocytes, macro-

phages, and dendritic cells), the MNP OS dataset contains mac-

rophages from the yolk sac (embryonic day 10.5 [E10.5]) and

macrophages differentiated in vitro from embryonic stem cells

(embryoid body-derived macrophages, E6–E8). Furthermore,

we leveraged recently released single-cell RNA sequencing

(RNA-seq) profiling of the multiple murine organs (Tabula Muris

Senis11) and reanalyzed those data by focusing only on the

phagocytic populations across 18 tissues (Figures 1H and 1I).

Taken together, a compendium of data assembled in this work

covers multiple cell subpopulations found across 38 different tis-

sues (Figure 1B).

Using these transcriptional data, we sought to identify the ma-

jor metabolic features characteristic of the different populations

of phagocytic cells and define how these features vary across

the cell types and their locations. Such a computational task

hasnotbeenaddressedpreviously for dataof such scale. Indeed,

wepreviously describedacomputational approach, calledgenes

and metabolites (GAM),12 that uses metabolic networks as the

backbone for analysis of transcriptional data and provides a veri-

fiable and systematic description of the metabolic differences

between two conditions.9 However, the datasets in question

contain hundreds or even thousands of individual profiles, while

the GAM approach is designed to analyze comparisons between

two conditions. Therefore, we have developed a computational

approach, GAM-clustering, which performs an unbiased search

of a collection of metabolic subnetworks that jointly definemeta-
2 Cell Reports 42, 112046, February 28, 2023
bolic variability across large datasets (available on GitHub; see

STAR Methods). By doing so, GAM-clustering reveals metaboli-

cally similar subpopulations in a manner that does not require

explicit annotation or pairwise comparison of individual samples.

We demonstrate that this approach is more powerful in terms of

identifyingmetabolic modules compared with conventional gene

expression clustering approaches. Our analysis revealed major

metabolic features associated with different cell subpopulations

and highlighted several metabolic modules that are specific to

individual cell types, tissues of residence, or developmental

stages. As an example, GAM-clustering analysis revealed that

the cholesterol de novo synthesis pathway might play an impor-

tant role in the context of migratory dendritic cells (DCs), which

we validated by measuring membrane cholesterol levels in

migratory and tissue-resident DCs and using in vivo pharmaco-

logical inhibition of cholesterol synthesis followed by tracking of

DC migration. As a second example, GAM-clustering revealed

the antioxidant systemasan important accompaniment of arach-

idonic acid metabolism during inflammatory response in tissue

macrophages. Experimental measurement of cysteinyl leukotri-

enes production levels after inhibiting glutathione synthesis

showed a biological effect of this system in peritoneal and lung

alveolar macrophages.

Taken together, our work provides both (1) a data and analysis

resource in terms of studying the variability of MNPs, as well as

(2) a validated computational approach that can unbiasedly

analyze both single-cell RNA-seq data as well as multi-sample

bulk RNA-seq datasets in terms of key underlying metabolic fea-

tures. Furthermore, we provide direct interactive access to the

data for examination and visualization through both single-cell

RNA-seq and bulk RNA-seq visualization servers, including

metabolic cluster annotations obtained in this work (https://

artyomovlab.wustl.edu/immgen-met/).

RESULTS

MNP OS and ImmGen Phase 1 (MNP P1) datasets
As a part of the OS ImmGen Project, a total of 337 samples were

collected and profiled through the collaborative effort of 16 lab-

oratories (Figures 1D, 1E, and S1A; Table S1). Each laboratory

sorted specific populations of MNPs from 26 distinct tissues,

isolated RNA from these populations, and submitted it for

centralized deep RNA-seq and subsequent quantitation. Along

with their samples of interest, each laboratory included RNA

https://artyomovlab.wustl.edu/immgen-met/
https://artyomovlab.wustl.edu/immgen-met/
mailto:alsergbox@gmail.com
mailto:martyomov@wustl.edu
https://doi.org/10.1016/j.celrep.2023.112046
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Figure 1. General overview of ImmGen mononuclear phagocytes open-source (IG MNP OS), ImmGen mononuclear phagocytes phase 1 (IG

MNP P1), and myeloid Tabula Muris Senis (mTMS) datasets

(A) Schematic representation of Mus musculus tissues, where samples were derived from (marked with colored dots depending on the dataset).

(B) Number of tissues overlapping across all datasets.

(C–G) Cell-type distribution across all datasets. Principal-component analysis (PCA) based on 12,000 most expressed genes across all samples colored by the

tissue of its origin (E and G) or cell type (D and F).

(H and I) Uniform manifold approximation and projection (UMAP) representation of cells colored by the tissue of its origin (I) or its type (H). LN, lymph node.
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from locally sorted peritoneal macrophages as a common con-

trol for evaluation/correction of potential batch effects (STAR

Methods, RNA-seq data processing). Of note, 15 samples from
the MNP OS dataset were previously used in the study of sexual

dimorphism of the immune system transcriptome,13 while the

complete dataset has not been analyzed before this work.
Cell Reports 42, 112046, February 28, 2023 3
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Overall, the transcriptional data demonstrated high concor-

dance between different collection sites and were merged into

a final transcriptional master table (Figures S1B and S1C; Data

S1). Previouslyestablishedmarkersof individualmyeloidsubpop-

ulations14–18matchedwellwith thesortedpopulations (FigureS2),

indicating the overall consistency of the dataset across different

research groups. As individual principal-component analysis

(PCA) plots show (Figure 1D), samples have clustered in accord

with their broad annotation as macrophages, DCs, monocytes,

or microglia and not in terms of lab sorting or in terms of

sequencing batch. Generally, subpopulation-specific effects

were stronger than tissue-specific differences within individual

subpopulations, as evident by comparing Figures 1D and 1E. To

estimate the degree of metabolic variability in the data, we exam-

ined theenrichmentof annotatedmetabolicpathways in thisdata-

set, revealing coherent transcriptional patterns across individual

subpopulations (Figure S3A). This indicated that systematic eval-

uation of themetabolic subnetworks within the data is warranted.

Initial ImmGen P1 data published previously5 include 202

samples of MNPs with a higher contribution of progenitor popu-

lations and a smaller number of microglial samples (Figure 1F)

overall spanning 16 tissues (Figure 1G)—wewill refer to this sub-

set as ImmGen MNP P1 from here onward. Similar to the MNP

OS dataset, enrichment in metabolic pathways across subpop-

ulations in MNP P1 data demonstrated coordinate variations

across the samples (Figure S3B).

Single-cell myeloid Tabula Muris Senis (mTMS) dataset
The Tabula Muris consortium has performed single-cell RNA-

seq for many tissues without explicit sorting into individual cell

populations.11 These data include myeloid cells localized in the

corresponding tissues, which can be computationally separated

based on the expression of common myeloid signatures. Using

the latest public dataset, TMS, we have analyzed the data for

235,325 cells to identify 51,364 myeloid cells (MNPs and neutro-

phils) that expressed key myeloid markers (Lyz2, H2-Aa, Mki67,

S100a9, Flt3, Emr1, Ccr2, Cx3cr1, Sall1, Clec4f, Lyve1, Itgax,

Xcr1, Clec4a4, Siglech, Ccr7; Figures 2A and 2D; STAR

Methods). These cells comprised a dedicated dataset, further

referred to as the mTMS dataset. While single-cell RNA-seq

data inevitably detect a smaller number of genes per cell

compared with bulk RNA-seq (Figure S4), the depth of the

mTMS dataset was sufficient to resolve classical cell popula-

tions. Specifically, unbiased clustering revealed 15 subpopula-

tions within the mTMS dataset (Figure 2B), which could be

readily identified as well-described populations of plasmacytoid

DCs, monocytes, Kupffer cells, microglia, and other cell types

(Figure 2C) based on previously described cell-specific markers

(Figure 2D). To our knowledge, we provide the first large-scale

curated annotation for the myeloid cells within TMS data. Corre-

sponding annotations are available for hands-on exploration in

the interactive single-cell browser (https://artyomovlab.wustl.

edu/immgen-met/, see TMS).
Figure 2. TMS single-cell RNA-seq dataset

(A) Dataset preprocessing resulting in myeloid subset derivation.

(B–D) UMAP plot with natural clusters (B) and cell types (C) identified based on c

dendritic cell; MF, macrophage; alvMF, alveolar macrophage; MG, microglia; KC,
GAM-clustering: Identification of metabolic
subnetworks in datasets with multiple conditions
Previously, we have shown that metabolic remodeling between

two conditions can be analyzed using network-based analysis

of their transcriptional profiles.9,12 Specifically, the GAM algo-

rithm searches for optimal subnetworkswithin a globalmetabolic

network byweighing individual enzymes in accordwith the differ-

ential expression of their genes and then solving the generalized

maximum-weight connected subgraph (GMWCS) problem.12,19

While this approach cannot be directly translated to multi-sam-

ple/single-cell datasets such as ImmGen or TMS data, we were

able to reformulate theweighting scheme in amanner that allows

aGMWCS subnetwork searchwithout explicit annotation of indi-

vidual samples or conditions. Here, we describe a GAM-clus-

tering method that allows the user to obtain metabolic subnet-

works enriched within the transcriptional data that include

many samples across multiple conditions.

In brief, GAM-clustering searches for connected metabolic

subnetworks that have most correlated expressions of individual

enzymes, resulting in a collection of subnetworks that follow

distinct transcriptional profiles. To achieve that, we first initialize

pattern-generating profiles by clustering all metabolic genes

based on their co-expression patterns (Figure 3; see STAR

Methods for details). For initialization of the multi-sample bulk

RNA-seq data, we use k-medoids clustering with k = 32 (see

Figures S5A and S5B for parameter sensitivity); any other gene

expression clustering approach can be used in this step since

downstream steps include significant regrouping and merging

of individual clusters. For initialization of single-cell RNA-seq

data, we first cluster the cells in the dataset into multiple clusters

(�100), which provides a sufficient balance between fine resolu-

tion of the data and minimal coarse graining needed to avoid

drop-out artifacts (see STAR Methods for details). Then, genes

are clustered using the same procedure as for multi-sample

bulk datasets.

Next, each enzyme is weighed with respect to the similarity of

its transcript’s profile to the average cluster/pattern profile, re-

sulting in multiple weights per gene that are specific for each

pattern (Figure 3). For any given pattern, weights of individual

enzymes serve as input to the GMWCS solver, resulting in the

individual subnetworks that are associated with each pattern. In-

dividual subnetworks are then refined in an iterative procedure of

updating the gene content for each pattern (see STAR Methods

for details). The final output presents a set of specific subnet-

works that reflect metabolic variability within a given transcrip-

tional dataset (Figure 3).

GAM-clustering improves recognition of metabolic
modules over unbiased clustering approaches
GAM-clustering utilizes preconceived knowledge about the

underlying metabolic network and therefore is expected to be

more powerful in terms of finding metabolically enriched mod-

ules. To evaluate this expectation, we comparedGAM-clustering
ell specific markers (D). NP, neutrophil; Mo, monocyte; prog, progenitor; DC,

Kupffer cell; pDC, plasmacytoid dendritic cell; migDC, migratory dendritic cell.
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Figure 3. Scheme of analysis approach for

multi-sample metabolic network clustering

(GAM clustering)

The dataset’s metabolic genes are initially clus-

tered based on a k-medoids algorithm. Averaged

gene expression of the obtained clusters is further

considered as patterns. For each gene, a score is

calculated on the basis of its correlation with each

pattern. These scores are superimposed on the

KEGG metabolic network. Based on these scores,

the most weighted connected subnetwork is found

for each parent. After the refinement procedure,

metabolic modules as a final version of sub-

networks are obtained.
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with commonly used unbiased clustering approaches such as

weighted gene co-expression network analysis (WGCNA) and

k-medoids (with Pearson correlation distance as a distance

measure), which both allow identifying clusters of genes with

high pairwise correlation. It is worth noting that the k-medoids

approach is used as a part of the GAM-clustering method for

generating the initial approximation (see STAR Methods for

more details). Unlike GAM-clustering, both WGCNA and k-me-

doids methods do not take into consideration the network struc-

ture of metabolic reactions, so we expect that GAM-clustering

improves recognition of metabolically enriched modules over

these clustering approaches. To this end, we clustered 1,837

metabolic genes in the ImmGen MNP OS dataset using GAM-

clustering, WGCNA, and k-medoids methods. As the k-medoids

method requires an explicit setting of theparameter k equal to the

number of producedclusters, k valueswerechosen tobeequal to

10 and 20 to make the results comparable with 9 and 19 clusters
6 Cell Reports 42, 112046, February 28, 2023
unbiasedly produced by GAM-clustering

and WGCNA methods, respectively. In

an additional instance of the k-medoids

clustering, k was set equal to 32 since

this value was used for initial approxima-

tion production in the GAM-clustering

method.

For each clustering method, ob-

tained clusters (modules) were examined

against 80 KEGG murine metabolic path-

ways by hypergeometric test (common

and descriptive pathways corresponding

to KEGG’s ‘‘global and overview maps’’

were not considered in order to increase

the specificity of annotation; pathways

with less than 10 constituting genes

were also excluded). Modules’ overlap

with the individual KEGG metabolic path-

ways was also analyzed in terms of the

p value (p adjusted in the case of multi-

ple comparisons) (Figure S6A) and the

percentage of module’s covered genes

(Figure S6B). For these comparisons,

modules obtained by the GAM-clustering

method demonstrate significantly higher

enrichment in selected metabolic path-
ways in both metrics (p value and number of overlapping genes)

compared with other clustering methods. Moreover, WGCNA

and k-medoids have identified manymodules without significant

overlap with any KEGG metabolic pathway. This observation

confirms that modules found by GAM-clustering are more rele-

vant in terms of identifying metabolic features of the underlying

dataset. Note that the GAM-clustering method does not specif-

ically enforce enrichment in KEGG pathways but rather lever-

ages the global metabolic network structure. An additional

advantage of GAM-clustering is its interpretability, as modules

produced by GAM-clustering have moderate sizes from 5 to 39

genes and are composed of enzymes topologically closely

located on the metabolic network (Figure S6C).

Major metabolic modules within MNP subpopulations
The GAM-clusteringmethod was applied to data from all baseline

(non-infected) samples and yielded nine distinct metabolic



Figure 4. Metabolic modules as a result of multi-sample metabolic network clustering of all myeloid cells but not inflammatory conditions

from ImmGen MNP OS dataset

(A) Heatmap representing samples hierarchically clustered based on averaged gene expression of each of obtained module (from lowest as blue to highest as

red). Euclidean distance is used as a clustering metric. YS MF, yolk sac macrophage; EB MF, embryoid body macrophage; alvMF, alveolar macrophage; SPM,

small peritoneal macrophage; MG, microglia; MF, macrophage; Mo, monocyte; DC, dendritic cell; pDC, plasmacytoid DC; migDC, migratory DC.

(B) Annotation of the obtained modules based on gene enrichment in KEGG and Reactome canonical pathways. Enrichment value is calculated as a percentage

of module genes contained in a particular pathway.

(C) Radar chart representation of metabolic modules within each metasample. Each individual sample is shown as a gray line, while mean of all samples inside

one metasample is shown as a colored line. Nine radii of the radar chart are devoted to the corresponding metabolic modules: 1 and 2: lipid metabolism; 3: FAS

pathway; 4: mtFASII pathway; 5: cholesterol synthesis; 6: glycolysis; 7: folate, serine, and nucleotide metabolism; 8: FAO and sphingolipid de novo synthesis; and

9: glycerophospholipid metabolism. Metasamples of EB MFs + alvMFs and alvMFs + SPM cells are shown at one chart as they are extremely close in their

metabolic characteristics.
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modules (Figure 4A; Table S2). Hierarchical clustering of samples

based on the Euclidean distancemetric in the space of these nine

metabolic modules showed that they could be broadly separated

based on the cell types: yolk sac macrophages, DCs, monocytes,

and macrophages from an adult organism. Broadly defined

mononuclear cell types are further split into several smaller meta-

samples: DCs subdivided into plasmacytoid DCs (pDCs), tissue-

specific DCs, and migratory DCs (migDCs) and macrophages

subdivided into microglia, adipose tissue macrophages, and a

large metasample of tissue-residing macrophages, as well as an

additional metasample composed of embryoid body, alveolar,
and small peritoneal macrophages (SPMs) that clustered

distinctly from other macrophage subpopulations (Figure 4A).

While obtained metabolic modules/subnetworks provide a

more accurate description of metabolic diversity compared with

canonically annotated pathways, the latter can be useful for

coarse-grained understanding of functionalities associated

with each subnetwork (Figure 4B). Indeed, pathway enrichment

analysis along with subnetwork gene content analysis indicate

that modules 1, 2, 8, and 9 represent various aspects of lipid

metabolism, and modules 3 and 4 represent two types of fatty

acid synthesis pathways. Finally, distinct modules represent
Cell Reports 42, 112046, February 28, 2023 7
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Figure 5. Cell types shared between IG

MNP OS, IG MNP P1, and mTMS datasets

have similar patterns of metabolic modules

signatures

(A) Population memberships across the datasets:

prog, progenitor; SC, stem cell; MLP, multi-line-

age progenitor; MF YS, yolk sac macrophage; MF

EB, embryoid body macrophage; MF, macro-

phage; alvMF, alveolar macrophage; SPM, small

peritoneal macrophage; MG, microglia; KC,

Kupffer cell; Mo, monocyte; pDC, plasmacytoid

dendritic cell; DC, dendritic cell; migDC, migratory

dendritic cell; NP, neutrophil (Table S3).

(B) Enrichment of individual metabolic modules

across all datasets obtained during GAM-clus-

tering analysis of IG MNP OS dataset.
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cholesterol synthesis metabolism- (module 5), glycolysis-

(module 6), and nucleotide/folate metabolism-associated subnet-

works (module 7).

The underlying metabolic phenotypes for each metasample

can be represented using radar chart diagrams (Figure 4C):

each metasample is defined by a specific combination of meta-

bolic features that provides insights into metabolic wiring within

those populations. Here, the names of metasamples are given

based on the most common sample type inside the cluster. An

alternative view of the samples in the space of metabolic mod-

ules can be obtained using PCA that is built based on only 9

metabolic modules, which shows the distinct separation of indi-

vidual metasamples (Figure S6D). Consistently, when overlaid

with the PCA representation from Figure 1, individual metabolic

modules formed coherent patterns indicating the groups of

metabolically similar samples (Figure S6E). Altogether, themeta-

bolic modules/subnetworks and corresponding metasamples

encapsulate metabolic variability across both cell types and their

tissues of residency. We next turn to examine the robustness of

the obtained subnetworks across three considered datasets.

Three independent large-scale datasets show
consistent metabolic features
We next considered if metabolic subnetworks derived from

ImmGen MNP OS data can be seen in the other two large-scale

datasets considered in this work—ImmGen MNP P1 and mTMS
8 Cell Reports 42, 112046, February 28, 2023
datasets. While overlap in profiled tissues

is considered (Figure 1B), three datasets

are not identical in terms of populations

profiled. We therefore grouped the

samples into 19 general classes and

compared the datasets by looking at the

metabolic enrichments across these

classes (Figure 5A; Table S3). To examine

the robustness of metabolic signatures,

we computed enrichments of individual

metabolic modules from Figure 4A in

each of the 19 representative classes of

ImmGen MNP OS, ImmGen MNP P1,

and mTMS. Indeed, all dataset modules

demonstrated extremely similar enrich-
ment profiles (Figure 5B): for instance, module 1 was enriched

in microglia, adipose tissue macrophages, and Kupffer cells,

module 8 was enriched in alveolar macrophages, and module 5

was enriched in pDCs and migDCs across all datasets.

Importantly, independent application of the GAM-clustering

method to each of the datasets also revealed a very high

degree of similarity in obtained modules, highlighting the repro-

ducible and robust nature of the derived metabolic subnetworks

(Figure S7A).

Next, we examined individual subnetworks from the perspec-

tive of metabolic reactions covered and described both pub-

lished evidence of the corresponding metabolic activities and

validation data obtained in this project.

Subnetworks associated with early developmental
stages
Module 6 (Figures 6A, 6B, and 6D) is one of the modules most

distinctly associated with the yolk sac, embryoid body, alveolar,

and SPMs. This module, though unbiasedly derived by our

network analysis, closely matches the canonical glycolysis

pathway (Figure 6B), indicating strong transcriptional co-regula-

tion of these genes across the collected samples. Enrichment of

the glycolysis module in developmental cell types is consistent

with previously published data highlighting the importance of

glycolysis for stem-like and progenitor populations.20–23 This is

also consistent with the ImmGen MNP P1 and mTMS data
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(Figure 6D), where this module is also most enriched in progen-

itor populations. Interestingly, mTMS single-cell RNA-seq data

also demonstrate that this module is enriched in neutrophils, in

accord with the described high glycolytic rate in these cells.24

Module 7 (Figures 6A, 6C, and 6D) represents another set of

metabolic activities, including folate and serine metabolism and

the nucleotide biosynthesis pathway, typically associated with

the progenitor populations.25–27 In addition to the yolk sac mac-

rophages, this module is also enriched in some tissue-residing

DCs and pDCs (but not in migDCs). Indeed, the importance of

some of these pathways (e.g., folate metabolism) has been

demonstrated in DC functions such as antigen presentation.28

Cholesterol synthesis pathway is enriched in and
functionally important for migDCs
Module 5 almost exclusively consists of enzymes from the

cholesterol metabolism/mevalonate synthesis pathway and is

enriched in embryoid body macrophages and some DC sub-

sets (Figures 6D–6F). Specifically, cholesterol synthesis ap-

pears to play a major role in migDCs, while it is less prominent

in pDCs and conventional tissue-residing DCs. Additionally,

with respect to potential tissue-specific imprinting, it is worth

noting that a small subset of tissue-residing macrophages,

comprised of epithelial and dermal macrophages, are enriched

in genes of the mevalonate/cholesterol synthesis pathway

(Figure 6E).

One of the main achievements in this work is the proof of the

feasibility of metabolite level predictions from gene expression.

For example, GAM-clustering analysis makes it possible to link

cell cholesterol levels with the expression of specific genes.

To illustrate this assertion, we analyzed cholesterol levels in

cell plasma membranes in migDCs and tissue DCs using flow

cytometry and perfringolysin O (PFO)-binding assay. Because

PFO binds selectively to cholesterol-rich domains of cell mem-

branes,29 its binding level correlates with cholesterol expression

and membrane transport. Interestingly, PFO binding was signif-

icantly higher in migDCs migrating from the skin to skin-draining

lymph nodes (sdLNs) compared with tissue conventional DCs

from the spleen, liver, lungs, and perigonadal fat (Figures 6G,

6H, and S7B). This pattern of cholesterol synthesis revealed by

PFO binding was concordant with the increased expression of

genes from the cholesterol module in migDCs (Figure 6E),
Figure 6. Subnetworks associated with early developmental stages an

(A and E) Heatmaps of module patterns along with the expression of some of its

highest as red). YS MF, yolk sac macrophage; EB MF, embryoid body macrop

microglia; MF, macrophage; Mo, monocyte; DC, dendritic cell; pDC, plasmacyto

(B, C, and F)Metabolicmodules per sewhere edges ofmodules are attributedwith

module pattern and thickness according to its score.

(D) Enrichment of modules genes expression (from lowest as blue to highest as r

datasets: IG MNP OS, IG MNP P1, and mTMS datasets.

(G and H) Flow cytometry analysis of DC staining with cholesterol-dependent cy

membrane. (H) Mean fluorescence intensity (MFI) levels of PFO binding in DC

independent mouse. Statistics by one-way ANOVA with Dunnett’s multiple comp

(I) DC migrations experiment scheme.

(J) Total plasma cholesterol levels in control and treated-with-simvastatin anima

(K) Percentage of migrated FITC+CD11c+ DCs in draining lymph nodes after FITC

group; statistical analysis by unpaired two-tailed t test. **** p < 0.0001.

(H, J, and K) Data shown as mean ± standard error of the mean.
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indicating the biological relevance of increased cholesterol

biogenesis in migDCs.

Enrichment of cholesterol metabolism in migDCs is consistent

with mechanistic data by Hauser and colleagues, who showed

that cellular cholesterol levels are directly linked to the ability of

DCs to oligomerize Ccr7 (a key marker of migDCs) and acquire

a migratory phenotype.30 Given the results of our analysis and

these published mechanistic connections, we evaluated mobili-

zation of DCs to LNs following epicutaneous application of fluo-

rescein isothiocyanate (FITC) in either control mice or mice

treated intraperitoneally (i.p.) with low-dose simvastatin, an in-

hibitor of 3-hydroxy-3-methylglutaryl (HMG) coenzyme A reduc-

tase (0.57 mg/kg/day), for 7 days (Figure 6I), which significantly

decreased cholesterol levels in their plasma (Figure 6J). dLNs

collected 18 h after FITC application demonstrated significantly

fewer migrated FITC+CD11c+ DCs in the animals treated with

simvastatin, illustrating that in vivo interference with cholesterol

synthesis reduces DC migration to the LN, fitting with the

prominent expression of cholesterol synthesis genes in DCs

(Figure 6K). Surprisingly, simvastatin treatment increased mem-

brane cholesterol levels of migDCs isolated from dLNs (Fig-

ure S7C), suggesting a cell-level compensatory mechanism in

migDCs that counteracts systemic decrease in circulating

cholesterol.31 Additionally, in this model, we cannot exclude an

indirect effect of cholesterol-synthesis inhibition on migDCs via

altered chemotactic effects in LNs. Nevertheless, these results

illustrate general validity of our analysis and highlights features

of the systemic metabolic perturbations, such as statin treat-

ments, that were not recognized previously.

Subnetworks associated with lipid metabolism
Modules 1 and 2 cover various aspects of lipid metabolism and

are strongly specific to macrophages relative to monocytes and

DCs (Figures 7A–7D). Due to general similarity of their patterns,

we merged the subnetworks for modules 1 and 2 in order to

make the interpretation easier (Figures 7C, 7D, S8A, and

S8B). The resulting subnetwork is centered around phospho-

lipid and arachidonic acid metabolism and includes parts of

the glutathione and cysteine/glutamate/glycine metabolism

pathways, as well as the N-acetylglucosamine pathway.

Indeed, arachidonic acid metabolism has been shown to play

major role in macrophages.32,33 Its metabolic flow is associated
d DCs

genes or genes related to the same biological subject (from lowest as blue to

hage; alvMF, alveolar macrophage; SPM, small peritoneal macrophage; MG,

id DC; migDC, migratory DC.

color according to correlation of its enzyme’s gene expression to this particular

ed, transparent dots correspond to treated samples) across all three analyzed

tolysin perfringolysin O (PFO) that indicates the level of cholesterol in the cell

subsets. n = 4 mice per group (2 male and 2 female); each dot indicates an

arison test.

ls; n = 5 mice in each group; statistical analysis by unpaired two-tailed t test.

application in control and treated-with-simvastatin animals; n = 20mice in each



Figure 7. Subnetworks associated with fatty acid synthesis and degradation

(A) Heatmaps of module patterns along with the expression of some of its genes (from lowest as blue to highest as red). YS MF, yolk sac macrophage; EB MF,

embryoid body macrophage; alvMF, alveolar macrophage; SPM, small peritoneal macrophage; MG, microglia; MF, macrophage; Mo, monocyte; DC, dendritic

cell; pDC, plasmacytoid DC; migDC, migratory DC.

(B) Enrichment of module gene expressions (from lowest as blue to highest as red, transparent dots correspond to treated samples) across all three analyzed

datasets: IG MNP OS, IG MNP P1, and mTMS datasets.

(C) Metabolic modules per se and corresponding schematic diagrams. Edges of modules are attributed with color according to correlation of its enzyme’s gene

expression to this particular module pattern and with thickness according to its score.

(D) Schematic representation of metabolic module.

(E) Schematic illustrating the design of the experiment with mouse peritoneal (Per) and alveolar (Alv) macrophages (MFs) treated with BSO for 12 h to inhibit GSH

synthesis followed by activation by zymosan for 4 h.

(F) Secretion levels of PGE2; n = 3 mice per group; statistics by unpaired two-tailed t test. N.S., non-significant (p > 0.05).

(G) Secretion levels of cysteinyl leukotrienes; n = 3 mice per group; statistics by unpaired two-tailed t test.

(F and G) Data shown as mean ± standard error of the mean.
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with utilization of phospholipids to produce two major classes

of arachidonic acid derivatives: leukotrienes and prostaglan-

dins. Unlike prostaglandins, cysteinyl leukotriene production

(C4 and downstream) requires glutathione as an intermediate

metabolite, thus involving the glycine, cysteine, and glutamate

pathways.34
To validate the biological role of thismetabolicmodule in tissue

macrophages, we sorted mouse peritoneal and lung alveolar

macrophages (Figure S8C), followed by inhibiting glutathione

synthesis using buthionine sulfoximine (BSO), an inhibitor of

gamma-glutamylcysteine synthase (Figure 7E). Production of

prostaglandin E2 (PGE2) is the glutathione-independent pathway
Cell Reports 42, 112046, February 28, 2023 11
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of arachidonic acid derivative metabolism. In keeping with this

metabolic model, glutathione depletion did not alter PGE2 secre-

tion by peritoneal and alveolar macrophages activated with

zymosan, a TLR2 and Dectin-1 agonist (Figure 7F). In contrast,

as predicted by increased transcription of genes connecting

glutathione synthesis to cysteinyl leukotriene production in tissue

macrophages, glutathione depletion significantly reduced cys-

teinyl leukotriene secretion from zymosan-activated peritoneal

and alveolar macrophages (Figure 7G). These results show that

tissue-resident macrophages profoundly depend on glutathione

synthesis to efficiently secret cysteinyl leukotriene, suggesting

the role of glutathione-arachidonic acid metabolism as a key

regulator of the inflammatory function of tissue macrophages.

Furthermore,our analysispickedupadistinct subnetworkofco-

expressed genes from the glycerophospholipid pathway (mod-

ule 9; see Figures S8D–S8F) thatwas particularly highly expressed

in the microglial populations (Figure S8D). This module included

enzymessuchasDgkdandLpcat2, suggesting that their role inmi-

croglia might be of particular interest.35,36 As Figure S8E shows,

these observations were common across all three datasets.

Subnetworks associated with fatty acid synthesis and
degradation
Our analysis identified three distinct subnetworks associated

with the modulation of fatty acids in terms of both their synthesis

(modules 3 and 4) and fatty acid oxidation (module 8) (Figure S9).

The structure of module 3 (Figures S9A–S9C) reflects the en-

ergetic demands of the fatty acid synthesis and includes por-

tions of the pentose phosphate pathway and the TCA cycle,

where citrate synthase (Cs) is one of the most pattern-specific

genes within this subnetwork. Overall, module 3 is highly en-

riched in DC populations but not in macrophage/monocyte

samples, underscoring another facet of metabolic divergence

between these cell types. The functional importance of this

module for DCs is evident from the fact that a blockade of fatty

acid synthase (Fasn)-mediated fatty acid synthesis markedly

and selectively decreases dendropoiesis both in mice and in

humans.37,38

Interestingly, the pattern of module 8 (Figures S9A, S9B, and

S9E) was directly opposite to module 3 and was strongly en-

riched among various tissue macrophages, particularly in alve-

olarmacrophages.Metabolic flow encompassed by this network

includes enzymes such as Lipa (LAL), which is responsible for

lysosomal lipolysis and the initial breakdown of intracellular lipid

storage. This breakdown is followed by mitochondrial import of

cytosolic fatty acids via carnitine transport shuttle (Cpt1a) and

their subsequent breakdown via classical fatty acid oxidation

(FAO) steps (Acox1, Hadha, etc.)39,40 (Figure S9E). The Lipa

expression pattern is one of the most specific for module 8, indi-

cating its potential importance for macrophages. Indeed, there

are studies highlighting the importance of Lipa for macrophage

function, especially in the context of anti-inflammatory polariza-

tion.41 Furthermore, Lipa is also likely to be important for human

macrophages, as mutations in the LIPA gene of patients with

cholesteryl ester storage disease (CESD) cause aberrant choles-

terol accumulation in tissue macrophages.42,43 Enrichment of

FAO-related module 8 in alveolar macrophages is particularly

interesting as it is distinctly reproduced in ImmGen MNP P1
12 Cell Reports 42, 112046, February 28, 2023
and mTMS data. The importance of this pathway in the lungs

is intriguing and warrants further detailed investigations.

DISCUSSION

Here, we introduced a dataset covering multiple subpopulations

of DCs,monocytes, andmacrophages fromdiverse tissues—the

result of ImmGenMNPOS profiling effort. We focused on under-

standing potential metabolic variability among collected myeloid

cell subpopulations and co-analyzed it in the context of two

other large-scale profiling efforts—ImmGen P1 and TMS. Using

an algorithmic approach (GAM-clustering), we have defined 9

metabolic subnetworks encapsulating the major metabolic dif-

ferences that were highly reproducible across three studied

datasets. Our analysis demonstrated that specific metabolic

features could be attributed to cell populations and specific tis-

sues of residence for distinct populations (e.g., adipose tissue

macrophages).

Our analysis suggested that major metabolic differences be-

tween baseline (unactivated) macrophages and DCs are (1)

levels of Fasn-mediated fatty acid synthesis enriched in DCs’

transcriptional profiles and (2) regulation of arachidonic acid

metabolism, which is enriched in macrophages. Among various

tissue-residing cell types, it was apparent that microglia and

CNS macrophages have a very distinct phenotype relative to

other populations: based on their transcriptional profile, they

appear more metabolically quiescent, yet a particular lipid-asso-

ciated module (module 9) was enriched in these cells, with key

genes being Lpcat2, Dgkd, and Csd1, which are involved in

phospholipid metabolism and the generation of bioactive lipids

from phospholipid precursors. Of interest, hierarchical metabolic

clustering of macrophages places adipose-tissue macrophages

and microglia closer than another group of diverse tissue

macrophages. Residence in a lipid-rich environment made lipids

an integral and very important part of microglia phenotype and

functions regulation, which was shown in a wide range of

publications.44–47 Perturbations in lipid substrate utilization can

also affect microglia’s phagocytic and inflammatory statuses,

shaping disease-specific microglia features.48–50

Indeed, distinct patterns in lipid metabolism, including path-

ways related to cholesterol, were also apparent in DCs versus

macrophages. Macrophages’ capacity to handle cholesterol

and store it in esterified form to generate so-called macrophage

foam cells is a well-established theme in cardiovascular research

and inflammatory disease.51,52 Our data reveal that expression of

Lipa, an enzyme involved in breaking down cholesterol esters in

the lysosome and whose mutation is associated with lysosomal

storage diseases, is a widespread characteristic of tissuemacro-

phages but not DCs.On the contrary, we observed that pathways

active in cholesterol synthesis are very low in all tissue macro-

phages but elevated in monocytes and DCs, especially migDCs.

Thus, it appears as though macrophages are oriented toward

handling exogenously derived cholesterol, such as that which

may be derived from engulfment of large amounts of phagocytic

cargo, whereas DCs are oppositely programmed to synthesize

their own cholesterol and associated intermediates. Tissue

macrophages are especially incapable of migrating to distal sites

like LNs, a major functional distinction from DCs. We showed
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that transcriptional activity of cholesterol biogenesis genes and

membrane cholesterol levels was increased in migDC compared

with tissue DC subsets, suggesting its important role in DC

migration from tissues into LNs. Moreover, we validated the

importance of the cholesterol synthesis pathway for migDCs

in vivo by using pharmacological interventions with simvastatin.

However, our results show that membrane cholesterol levels in

migDCs were increased in the context of circulating cholesterol

lowering, indicating that further studies are needed to under-

stand better the interplay between systemic and cellular choles-

terol metabolism and DC migration.

Finally, we predicted and validated experimentally the

elevated activity of metabolic pathways connecting glutathione

synthesis and the production of cysteinyl leukotrienes in tissue

macrophages. Cysteinyl leukotrienes are established mediators

of bronchial asthma.53 Dectin-2 activation induces cysteinyl

leukotrienes synthesis in lung phagocytes and increases Th2 im-

munity.54 Our results suggest a role of glutathione-mediated

metabolic fine-tuning of Th2 immune responses through the cys-

teinyl leukotriene axis in alveolar macrophages.

Altogether, our analysis underscores metabolic variability

across cell types and tissues and highlights the need to under-

stand metabolic wiring not only in terms of cellular metabolism

but also at the level of whole-body communication networks

(see, e.g., Castillo-Armengol and colleagues55 and Droujinine

and Perrimon56). Furthermore, since direct metabolic profiling

is not feasible or sufficiently accurate now, the development of

ex vivo metabolomics profiling technologies57–59 suggests that

direct insight into metabolism of various myeloid subpopulations

through in vivo metabolomics techniques will be possible in the

future.

Lastly, there are several aspects of this approach that can be

further improved in the future. First, the current graph structure

reflects the connectivity of a metabolic network but does not

take into account explicit directionalities of specific reactions.

This is a consequence of the use of the underlying path-solving

algorithm, which works on undirected graphs19 and can poten-

tially impede interpretability of the results. Furthermore, the con-

nectivity of the current network is based on the existence of

metabolic reactions between individual metabolites and does

not explicitly take into account transformation of individual

atoms (carbons, nitrogens, etc.), akin to what can be measure

in metabolic flux analysis. This can be addressed by introducing

a more refined, atomistic structure of the metabolic network, as

was recently done in the Shiny GATOM approach.60 Finally, uti-

lization of different clustering metrics (e.g., silhouette) may be

added to assess the quality of derived modules and therefore

improve clustering.

Limitations of the study
Even though gene expression might be considered a reliable

proxy for metabolic processes exploration, it provides an indi-

rect estimate of cellular metabolism. Mass-spectrometry-based

single-cell metabolomics, 13C-label-tracing, extracellular flux

analysis, and protein data, as well asmetabolic enzymes activity,

are still valuable and necessary supplements to bulk and single-

cell data to provide the full picture. However, no coherent data of

this kind were available for the analyzed datasets.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Mouse strains

B Primary cell culture

d METHOD DETAILS

B RNA-sequencing

B RNA-sequencing data processing

B Single-cell RNA-seq data processing

B GAM-clustering

B Staining cells with perfringolysin O (PFO)

B DC migration assay

B Analysis of arachidonic acid metabolite secretion by

primary mouse macrophages

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Statistical analysis of the biological data

B Statistical analysis of the GAM-clustering method

d ADDITIONAL RESOURCES
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

celrep.2023.112046.
ACKNOWLEDGMENTS

We thank Amanda Swain, Monika Bambouskova, and Laura Arthur for

constructive comments on the manuscript. This work was supported by

ImmGen Consortium grant AI072073 (NIAID, NIH) and in part by the Division

of Intramural Research of the NIAID, NIH. The work was also partly supported

by R01-AI125618 (NIAID) to M.N.A.. D.A.M. was partly supported by a Discov-

ery Grant from the National Psoriasis Foundation (USA). A.G. and A.S. were

supported by Ministry of Science and Higher Education of the Russian Feder-

ation (Priority 2030 Federal Academic Leadership Program). M.H.S. was partly

supported by institutional grants from TU Dresden, Aix-MArseille Université,
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Maxim N.

Artyomov (martyomov@wustl.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The ImmGen MNP Open Source RNA sequencing dataset generated during this study has been deposited at GEO repository

(GSE122108) and is publicly available as of the date of publication. This paper also analyzes existing, publicly available data:

The ImmGen Phase 1 dataset (GSE15907) and The Tabula Muris Senis dataset (GSE149590). All accession numbers are also

listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOI is listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse strains
Female and male C57BL/6J mice of 6-week old were purchased from the Jackson Laboratory and housed in specific-pathogen-free

animal facility at Washington University in St. Louis during two weeks before the start of experiments. Animal protocols used in this

study were approved by the Institutional Animal Care and Use Committee at Washington University in St. Louis. Mice were

co-housed and randomized before creating body-weight-balanced groups to treat with simvastatin or PBS. Mice used for flow

cytometry analyses were euthanized at 10-11 week of age after 8 h fasting. Investigators were not blinded to experimental groups.

No animals were excluded from analysis.

Primary cell culture
Mouse primary macrophages were sorted from peritoneal cavity fluid (peritoneal macrophages, CD45+CD11b+F4/80+CD64+) and

lung tissue (alveolar macrophages, CD45+CD11b–F4/80+CD64+). 5 3 104 cells were plated in 0.2 mL of RPMI media +10% FCS

in the presence of 2mMglutamine and incubated with or without 0.5mM buthionine sulfoximine (BSO) for 12 h followed by activation

with zymosan for additional 4 h. Supernatant media were collected and used for ELISA assays.

METHOD DETAILS

RNA-sequencing
Bulk RNA-sequencing data were collected from 16 labs. All of the mice used in this study were handled in accordance with IACUC-

approved protocols. Each lab, in addition to their own samples, sorted a standard peritoneal cavity macrophage population
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(CD115+B220-F4/80hiMHCII�) for comparability between all labs. Samples were profiled using ImmGen’s ultra low input (ULI)

sequencing pipeline, in batches of 90–96 samples. All samples were sequenced in two separate NextSeq500 runs and combined

for increased depth (expect 8-12 106 reads per sample).

RNA-sequencing data processing
Following sequencing, ImmGenMNPOS raw reads were aligned with STAR to themouse genome assembly mm10, and assigned to

specific genes using the GENCODE vM12 annotation. Aligned reads were quantified using featureCounts. Samples that did not pass

the QC threshold for read counts (<2 million reads) were dropped for further analysis. Pearson correlation was calculated between

biological replicates to exclude samples that did not pass a threshold of 0.9 correlation coefficient. For the cell populations with three

biological replicates, of which one did not agree with the other two, the suspect one was removed from the dataset. In case cell pop-

ulations had only two replicates, both were removed. Samples with Jchain>1,000 and Ighm>10,000 were set asides as well as sam-

ples with high B cell, erythrocytes and fibroblasts transcripts. Peritoneal cavity samples were downsampled to keep consistency

across samples number in all tissues. All gene counts were imported into the R/Bioconductor package EdgeR and TMM normaliza-

tion size factors were calculated to adjust for differences in library size across all samples. Feature not expressed in at least three

samples above one count-per-million were excluded from further analysis and TMMsize factors were recalculated to create effective

TMM size factors. The effective TMM size factors and the matrix of counts were then imported into the R/Bioconductor package

Limma and weighted likelihoods based on the observed mean-variance relationship of every gene and sample were then calculated

for all samples. Performance of the samples was assessed with a Pearson correlation matrix and multidimensional scaling plots. As

GAM-clustering method itself does not perform any counts normalizations or batch corrections, ImmGen MNP OS data were as-

sessed for presence of any batch effect by PCA plots.

Single-cell RNA-seq data processing
Filtered h5ad file for Droplet subset was downloaded from the official Tabula Muris Senis repository (https://figshare.com/projects/

Tabula_Muris_Senis/64982). The data were processed by the standard Seurat pipeline and resulted in 235,325 cells organised in

distinct clusters detectable on TSNE/UMAP plots. Next, cells annotated with names corresponding to myeloid populations were

picked out. A differential gene expression analysis between these cells and all others was performed. Top 250 of these differentially

expressed genes were used as a ‘‘myeloid signature genes’’ (Table S4) to identify clusters that most express them and thus corre-

spond to myeloid cells. Cell content of these clusters was used to create a subset of 60,844 cells. Obtained dataset was analyzed by

non-myeloid marker genes to detect and remove cell doublets with T-cells, B-cells, NK-cells and fibroblasts (Cd3d, Cd3e, Cd3g,

Cd4, Cd8a, Cd19, Cd79a, Tnfrsf17, Cd22, Nkg7, Gnly, Col6a1, Col6a2, Col6a3). Finally, dataset of 51,364 cells was obtained and

used in the further GAM-clustering analysis.

GAM-clustering
The algorithm for multisample metabolic network clustering (hereinafter referred to as GAM-clustering) identifies modules describing

regulation of metabolism and is based on the previously developed GAM method.12 GAM-clustering extends the GAM method by

setting the task to find not one but several metabolic modules (connected subnetworks of metabolic network) with the condition

that each of these modules should contain as many metabolic genes with high pairwise correlation of their expression as possible.

The metabolic network used in the current analysis is presented as a graph where vertices are metabolites and edges are KEGG

database reactions which are mapped with catalyzing them enzymes and corresponding genes. This network is an undirected pseu-

dograph. Totally, network contains all possible biological reactions documented in KEGG database. Reactions specific for meta-

bolism of Mus musculus were selected based on gene annotation provided by KEGG and Bioconductor (https://bioconductor.

org/packages/org.Mm.eg.db/).61

Expression matrix given as an input for GAM-clustering method has rows corresponding to genes and columns corresponding to

the sequenced samples. GAM-clustering does not consider column annotations during the module deriving process.

There are two major parameters that control the number and the sizes of the final modules: k – the initial number of gene clusters,

and base – the value which is used during edgeweights calculation thereby enforcing the certain level of gene expressions correlation

in the module. The initial approximation of the final set of modules is carried out by k-medoids clustering of a gene expression matrix

for all metabolic genes of a dataset with some arbitrary k (here we used k = 32, see Statistical analysis of the GAM-clustering method

for details and Figure S5A). Each cluster forms a corresponding expression pattern which can be determined as averaged value of its

z-normalized gene expression values. The metabolic network used for further analysis is presented as a graph where vertices are

metabolites and edges are KEGG database reactions which are mapped with catalyzing them enzymes and corresponding genes.

For each particular pattern edges of this graph are scored (weighted) based on their gene expression similarity with this pattern and

dissimilarity with other patterns.

For each case of weighted graph a connected subgraph of maximal weight is found by a signal GMWCS (generalized maximum

weight connected subgraph) solver19,62 (https://cran.r-project.org/web/packages/mwcsr/) and is called a metabolic module. This

solver uses the IBM ILOG CPLEX library, which efficiently performs many iterations of this method in a reasonable amount of

time. Then, each pattern is updated by replacing it with an averaged gene expression of the module’s edges with a positive score.

If the pattern is changed, a new score set is calculated and a new iteration is performed. Before moving to the next iteration, small
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graphs are eliminated from further analysis so that there are no graphs with less than five edges and diameter less than four in the

output solution. The algorithm continues until the pattern content stops changing.

For the selection of the optimal set of modules we have assessed a range of module characteristics, for example, mean pairwise

correlation of module edges (i.e. genes) and the number of annotating pathways (see more details in Statistical analysis of the

GAM-clustering method). Altogether, the most cohesive and informative modules were obtained using k = 32 and base = 0.4

(Figure S5B), which we decided to use for the consecutive analysis.

GAM-clustering method is applicable not to bulk RNA-seq data only but to single-cell RNA-seq data as well. Single-cell data need

an additional step of preprocessing implying transformation of individual cells into technical samples. This is performed based on

averaging gene expressions of individual cells inside high resolution clusters. In case of single-cell RNAseq data, among final meta-

bolic modules might occur ones that do not cover all biological replicas of cell types they are specific for. These modules are elim-

inated from the final result.

Thus, the final metabolic modules are subnetworks of the overall metabolic network that contain a set of closely located genes with

high correlation of their expression profile across all samples.

GAM-clustering method is available at https://github.com/artyomovlab/ImmGenOpenSource.

Staining cells with perfringolysin O (PFO)
The cell suspensionwas prepared from collagenase D-treated and dissociated spleen, skin-draining lymph nodes, perigonadal white

adipose tissue, lungs, and liver of wild-type 8-week-old male and female C57BL/6J mice (Jackson Labs).63 The cells were stained

with Aqua Live/Dead kit followed by staining with 10 mg/mL of Perfringolysin O (PFO) from Clostridium perfringens (Cusabio # CSB-

EP314820CMB) in PBS at +25�C for 30 min, washed 3 times, and stained with an antibody cocktail (CD45 BUV563 clone 30-F11,

I-A/I-E BUV496 clone M5/114.15.2 from BD, CD11c PE-Cy7 clone N418, CD3e AF488 clone 145-2C11, CD19 FITC clone 1D3/

CD19, NK1.1 AF488 clone PK136, TER-119 AF488 clone TER-119, F4/80 AF488 clone BM8 from BioLegend, anti-Perfringolysin

O rabbit antibody [Abcam # ab225685] and Goat anti-Rabbit IgG (H + L) Highly Cross-Adsorbed Secondary Antibody AF647

[Thermofisher # A-21245]) and Fc-block for 30 min on ice. The cells were analyzed by flow cytometry using FACSymphony A3

Cell Analyzer and FlowJo software.

DC migration assay
Epicutaneous application of Fluorescein isothiocyanate (FITC) to study DC migration was performed on three areas of each side of

themouse back skin.64 Both females andmales were studied. Briefly, FITC (8mg/mL) was dissolved in acetone and dibutyl phthalate

and applied in 25-mL aliquots to each site. Recovered lymph nodes, 18 h later, were teased and digested in 2.68 mg/mL collagenase

D for 25min at 37�C. Then, 100 mL 100mMEDTAwas added for 5min, and cells were passed through a 100-mmcell strainer, washed,

counted, and stained for flow cytometry after counterlabeling with PE conjugated anti-CD11c (Biolegend). Prior to FITC painting,

some cohorts of mice were treated with simvastatin i.p. at 0.57mg/kg/day for 7 days, as this protocol was previously shown to signif-

icantly block monocyte diapedesis from the bloodstream.65 Control mice received vehicle i.p. For plasma cholesterol level measure-

ments, blood was collected from the retro-orbital venous sinus in EDTA-coated tubes frommice fasted for 6 h and anesthetized with

isoflurane. Plasma was separated by centrifugation at 3000 RPM at +4�C for 10 min. Total plasma cholesterol levels were measured

using a colorimetric Cholesterol Quantitation Kit (Sigma #MAK043).

Analysis of arachidonic acid metabolite secretion by primary mouse macrophages
The cell suspension was prepared from the lungs and peritoneal fluid of wild-type 8-week-old male C57BL/6Jmice (Jackson Labs).63

The cells were stained with an antibody cocktail (CD45 APC/Cy7 clone 30-F11, CD64 APC clone X54-5/7.1, F4/80 PE clone BM8,

CD11b BV421 clone M1/70 from Biolegend) and Fc-block on ice for 15 min followed by sorting of large peritoneal macrophages

and lung alveolar macrophages using BD FACSAria II Cell Sorter. 5 3 104 macrophages were incubated in 100 mL of

RPMI +10% FCS in 96-well plates in the presence of 0.5 mM buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, for 12 h

followed by activation with 5 3 106 particles per ml of zymosan (Invivogen) for 4 h. PGE2 and cysteinyl leukotrienes were measured

in cell supernatants using ELISA kits.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of the biological data
No statistical method was used to predetermine the sample size. For comparison of groups, non-paired two-tailed t test was used. In

case of multiple comparisons, p values were adjusted using the Dunnett’s correction. Statistical analyses were performed with Prism

v9.4.1 (GraphPad Software). Data are shown as means ± standard errors of mean. p < 0.05 was considered statistically significant.

Statistical analysis of the GAM-clustering method
The initial approximation of the final metabolic modules is carried out by k-medoids clustering of the expression matrix of all meta-

bolic genes of the dataset with some arbitrary parameter k (here used k = 32). Each cluster forms a corresponding expression pattern

which can be determined as the averaged value of z-normalized gene expression values in this cluster. Then, a gene’s score relative
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to each cluster is calculated according to formula (4). This score represents similarity of gene expression with themodule’s pattern (1)

and dissimilarity with other modules’ patterns (3). Formally, score is defined as follows:

dðgi; cjÞ = 1 � corðgi; cjÞ (Equation 1)
dðgi; c0Þhbase (Equation 2)
d0ðgi; cjÞ = min
ksj;k˛ ð0;MÞ

ðdðgi; ckÞÞ (Equation 3)
scoreðgi; cjÞ = � log
dðgi; cjÞ
d0ðgi; cjÞ (Equation 4)

where gi– expression of the i-th gene, i˛ ð1;NÞ;
cj– pattern of the j-th cluster, j˛ ð1;MÞ; ck– pattern of the j-th cluster or the fake pattern, j˛ ð0;MÞ; c0– the fake pattern;

d – distance to the pattern the score is being calculated for;

d’ – distance to the pattern which this gene has the most correlation with.

(all other patterns are considered except the pattern the score is being calculated for);

base – distance to the fake pattern.

The following approach allows to avoid collapsing similar modules with enough supporting genes into onemodule as only one pos-

itive score per gene is possible.

Thus, a set of networkswhere each edge isweighted according to its gene score is formed. For each pattern a connected subgraph

of maximal weight is found. These subgraphs are called metabolic modules. This procedure is carried out by an SGMWCS (signal

generalized maximum weight connected subgraph) solver19,49 (https://cran.r-project.org/web/packages/mwcsr) which uses the

IBM ILOG CPLEX library that efficiently performs many iterations of this method in a reasonable amount of time. Thus, an iterative

procedure of metabolic modules refinement is performed in a process of updating each of the patterns by replacing it with an aver-

aged gene expression of the module’s edges with a positive score.

One of the important parts in the procedure of updating the modules is the question when to stop. To answer this question, the

difference between the values of the patterns of the current iteration and the values of the patterns of all previous iterations, in which

there were the same number of modules, is found (this is done to avoid missing the situation when new iteration comes to the

condition close to one that once already has occurred). If difference is large (>0.01) which means that pattern content is quite

changed, a new score set is calculated and a new iteration is performed. If the difference between patterns is small enough

(<0.01), but non-informative (having less than 5 edges and/or diameter less than 4) modules are still presented in the output, the

less informative (most correlated with any other graph) module is eliminated from the further analysis. After removing one module,

the weights are recalculated and a new iteration of refinement is performed. The final result is a set of specific subnetworks that re-

flects metabolic variability among the samples of the analyzed transcriptome data.

The GAM-clustering method has two parameters: the number of initial clusters k (here used k = 32) and the distance to the fake

pattern base (here used base = 0.4). They affect the number, the size, intramodular gene correlation, and the number of unique anno-

tating pathways of the resulting modules (Figures S5A and S5B).

To explore the influence of k value to number of final modules themodel datawere designed. They imitate experiment with complex

design (15, 18 or 21 samples) where several (5, 10 or 15) modules are active each in a particular subset of samples. All combinations

of these data were analyzed by the GAM-clustering method and the following output features were calculated: number of final mod-

ules found bymethod, number of iterations performed and time elapsed during the analysis (Figure S5A). As these data are modeled,

we know howmanymodules are there in each experiment (dashed line in Figure S5A) and therefore we can evaluate how the number

of found modules relates to the number of real modules. In most cases GAM-clustering found approximately all real modules when

launched with the value k several times greater that the number of real modules. Moreover, a further increase of k does not lead to

results improvement, but nonlinearly increases the number of iterations and the working time of the method. Thus, it is reasonable to

detect some advisable k value so that user gets approximately full set of modules and does not spend to much time for the analysis.

As in real data we do not know the number of real modules, there is a heuristic approach that allows to find some k based on the

characteristics of the input data. This approach is based on elbow method that calculates the total within-cluster sum of square

(wss) for each k. For expression data there is no pronounced inflection point wherewss is sharply stops decreasing (usually this point

is considered equal to the optimal number of clusters). Here, we used point where the slope of the wss curve is 50% as steep as its

steepest slope. Corresponding to this point abscissa value was considered as k value.

The strategy for selecting optimal value of base parameter was formed on the basis of real data analysis, since it requires consid-

eration of the biological meaning of the obtained modules. At the beginning of the analysis, the GAM-clustering algorithm produces

some recommended value of k (see previous paragraph). For this k, we can calculate the average dissimilarity (distance) between the
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observations of the initial cluster and this cluster’s medoid over all clusters. Obtained value is proposed by the method as the rec-

ommended value of the base parameter. For the ImmGenMNPOS data analyzed in this study, there were 32 initial clusters proposed

and the recommended base value was equal to 0.4. This base value was determined to be optimal during the comparative study of

the results obtained with other different base values (Figure S5B). The optimality criterion included the calculation of the following

characteristics of the output modules: their number, size, average correlation of edges, the number of unique annotating paths,

the number of annotating paths corresponding to one cluster only, the percentage of genes with negative score, the percentage

of genes with negative correlation, the percentage of genes with correlation less than 1 – base. Noticeably, such characteristics

as the average number of genes in the module, the average percentage of genes with negative score and correlation, as well as

with a correlation less than 1 – base, are minimal for the recommended base value (0.4). This indicates that the modules obtained

for base = 0.4 have good internal correlation, as well as compactness. Modules obtained with a lower base value also show good

internal correlation, but they are characterized by the loss of a large number of significant modules. It is worth noting that for

base = 0.2 no modules were found. Modules obtained with larger base values, on the contrary, are annotated with a bigger number

of unique canonical pathways, however, many of these pathways relate to the same biochemical processes. Moreover, these mod-

ules are characterized by lower rates of intramodular correlation.

Even though default values of k and base parameters are proposed to user before the analysis based on the input data properties,

there is still an opportunity for user to select custom values of these parameters. Nevertheless, the general recommendation is to

stick with the proposed value of the base parameter, since its changes lead to the strong alterations in the size and content of the

final modules.

ADDITIONAL RESOURCES

The interactive browser for gene expression exploration of ImmGen MNP OS, Phase 1 and Tabula Muris Senis datasets analyzed in

this study was created.

Description: https://artyomovlab.wustl.edu/immgen-met/.
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