A role for phagocytosis in inducing cell death during thymocyte negative selection

Nadia S. Kurd^{1,2}, Lydia K. Lutes¹, Jaewon Yoon¹, Ivan L. Dzhagalov^{1,3}, Ashley Hoover^{1,4}, and Ellen A. Robey*¹

- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA.
- 2. Present address: Department of Medicine, University of California San Diego, San Diego, California, USA.
- 3. Present address: Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
- 4. Present address: Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
 - *Correspondence should be addressed to E.A.R. (erobey@berkeley.edu)

Abstract

Autoreactive thymocytes are eliminated during negative selection in the thymus, a process important for establishing self-tolerance. Thymic phagocytes serve to remove dead thymocytes, but whether they play additional roles during negative selection remains unclear. Here, we demonstrate that phagocytosis promotes negative selection, and that negative selection is more efficient when the phagocyte also presents the negative selecting peptide. Our findings support a two-step model for negative selection in which thymocytes initiate the death process following strong TCR signaling, but ultimately depend upon phagocytosis for their timely death. Thus, the phagocytic capability of cells that present self-peptides is a key determinant of thymocyte fate.

Introduction

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

During negative selection, thymocytes bearing self-reactive T cell receptors (TCR) are eliminated from the T cell repertoire, an important process for the establishment of self-tolerance. Thymocytes interact with a variety of thymicresident cells that present self-peptide:MHC complexes, and thymocytes bearing TCRs with high affinity for self-ligands can receive apoptotic death signals¹. Apoptosis is an immunologically silent form of cell death that is generally thought to be cell-autonomous once initiated². Although peptide-presenting cells provide the initial apoptotic stimulus to autoreactive thymocytes, whether additional cellular interactions are required to mediate thymocyte death remains unknown. In addition to the affinity of TCR for self-peptide-MHC, the nature of the peptidepresenting cell is also an important determinant of T cell fate. For example, hematopoietic cells, especially dendritic cells (DC), are potent inducers of negative selection, whereas cortical thymic epithelial cells (cTEC) are specialized to mediate positive selection, promoting thymocyte maturation and survival ³⁻⁸. Distinctive features of these cell types, including specialized peptide processing machinery in cTECs and high expression of costimulatory ligands in DCs, play an important role in instructing divergent thymocyte fates^{1,8}. Peptide repertoire and costimulation can contribute to the intensity of TCR signal experienced by a thymocyte, but whether the peptide-presenting cells provide additional TCR-independent signals to promote thymocyte death or differentiation is largely unknown.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

A related question is whether a strong TCR signal is sufficient to commit thymocytes to die in a cell-autonomous fashion, or whether other cellular interactions are required. Early observations of apoptotic bodies within thymic phagocytes ^{2,9}, together with time-lapse microscopy of thymocytes undergoing negative selection³-8,10, suggest a close coupling between thymocyte death and phagocytosis. In particular, visualization of dying thymocytes and phagocytes within thymic tissue slices showed that the death of autoreactive thymocytes invariably occurred during close contact with phagocytes, and in most cases death appeared to occur after phagocytosis¹⁰. However, it remained unclear whether phagocytes actually contributed to the death of thymocytes by serving as peptide-presenting cells and/or by actively inducing cell death. Dendritic cells are the most potent antigen-presenting cells (APC) for priming naïve T cells and also present self-peptide for negative selection^{3-7,11}, whereas thymic macrophages are known for their role in clearing away apoptotic thymocytes⁹. Nevertheless, there is considerable functional and phenotypic overlap between DC and macrophages. For example, the marker F4/80 is often used to identify macrophages, but also marks a population with substantial antigen presentation function¹². Likewise, the marker CD11c is often used to identify DCs, but is coexpressed with F4/80 by a subset of DC-like cells in the thymus¹³. To what extent the functions of peptide presentation and phagocytic clearance reside within separate or overlapping thymic cell populations remains unclear.

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Phagocytes recognize and uptake apoptotic cells via receptors for "eat-me" signals displayed on the surface of dying cells ¹⁴. For example, apoptosis induces asymmetry in the plasma membrane, leading to the exposure of phosphatidylserine (PS), which is then recognized by PS receptors on phagocytes. A variety of "eat-me" receptors are expressed and functional in the thymus¹⁵⁻¹⁷, but the mechanisms that mediate the efficient removal of autoreactive thymocytes during negative selection have not vet been clearly defined. Here, we used a thymic slice system in which thymocytes undergo negative selection *in situ* to address these questions. We found that depletion of thymic phagocytes or blocking phagocytosis impaired negative selection, allowing for the increased survival of thymocytes that had experienced strong TCR signals. We also identified the PS receptor Tim-4 as an important player during negative selection to tissue-restricted antigens (TRA). Finally, we demonstrated that negative selection is most efficient when the same cell both presents the agonist peptide, and phagocytoses the self-reactive thymocyte. Taken together, our data suggest a twostep model for negative selection in which strong TCR signals initiate the apoptotic program, but thymocytes depend on phagocytosis for their timely death. Thus, thymic phagocytes are not merely "scavengers", but rather play prominent roles in the induction of self-tolerance, both as peptide-presenting cells and as active inducers of self-reactive thymocyte death.

Results

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Depletion of thymic phagocytes inhibits negative selection To examine the role of phagocytes during negative selection, we used thymic tissue slices prepared from Macrophage-Associated Fas-Induced Apoptosis (MAFIA) mice. In these mice, an inducible suicide gene under the control of the colony stimulating factor 1 receptor (Csf1R) promoter is expressed in DC and macrophage subsets¹⁸. We have previously observed closely coupled thymocyte death and phagocytosis by GFP⁺ cells in thymic slices from LysMGFP reporter mice ^{10,19}. Flow cytometric analysis of the thymus of LysMGFP mice revealed that GFP-expressing cells include a subset of F4/80hi macrophages that have been previously described as having potent phagocytic abilities, as well as a subset of CD11chi DCs (Supplementary Fig. 1a)^{10,16}. We confirmed expression of the MAFIA transgene in these subsets using flow cytometric analysis to measure expression of a linked GFP gene (Supplementary Fig. 2a). We observed that treatment of thymic slices for 16 hours of culture with the small molecule inducer AP20187 led to the depletion of approximately 50% of F4/80hi macrophages and CD11chi DC (Supplementary Fig. 2b). To assess the impact of phagocyte depletion on negative selection, we used a previously described peptide-induced model of negative selection^{10,20}. Thymocytes from mice with a defined MHC class I-restricted TCR transgene (OT-I) were overlaid onto thymic slices with or without the cognate antigen (SIINFEKL, OVAp), along with a reference thymocyte population (F5 TCR transgenic or polyclonal WT

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

thymocytes) (Fig. 1a). We used flow cytometry to determine the ratio of yiable OT-I:reference thymocytes remaining in the slice as a measure of negative selection ^{10,20,21} (Fig. 1a). Consistent with our previous study¹⁰, we observed a substantial reduction in the number of live OT-I thymocytes relative to reference thymocytes in thymic slices containing OVAp after 16 hours of culture (Fig. 1b). In contrast, on phagocyte-depleted slices containing OVAp, the ratio of live OT-I:reference thymocytes was similar to that in -OVAp control slices, consistent with the idea that phagocytes promote negative selection. Thymic phagocytes, including DCs, serve as APCs during negative selection^{4,6,8,12}. This raises the possibility that the observed defect in negative selection on phagocyte-depleted slices could be the result of thymocytes receiving insufficient TCR signals. However, OT-I thymocytes on phagocyte-depleted slices did not show decreased levels of the TCR activation marker CD69, arguing against impairment of TCR signals (Fig. 1c). These results suggest that thymocytes on phagocyte-depleted thymic slices exhibit enhanced survival despite continuing to receive strong TCR signals. Negative selection and phagocytosis in a model of tissue-restricted antigen presentation Addition of agonist peptide directly to thymic tissue slices serves as a model for negative selection to ubiquitous self-antigen. To further characterize the relationship between thymocyte death and phagocytosis, we also examined a model

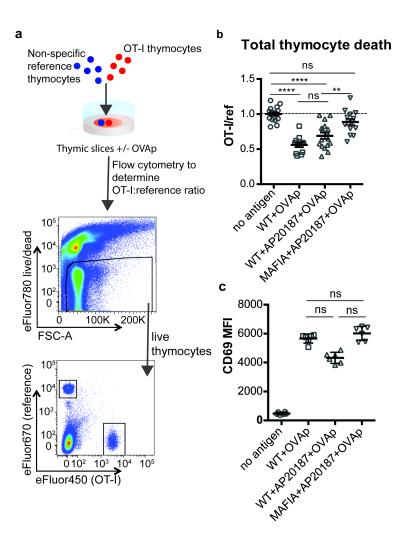


Figure 1. Depletion of phagocytes inhibits negative selection without dampening antigen recognition

(a) Strategy to quantify negative selection: labeled OT-I and reference thymocytes (either wild type or F5 TCR transgenic) were overlaid onto thymic slices with or without OVA peptide, cultured for 16 hours, and then dissociated for analysis by flow cytometry. Lower panels show the flow cytometry gating strategy used to quantify live OT-I and reference thymocytes. (b-c) For depletion of phagocytes, WT or MAFIA thymic slices were treated with AP20187 and cultured for an additional 16 hours prior to the addition of thymocytes and peptide. b) Thymocyte death displayed as the ratio of live OT-I thymocytes relative to live reference thymocytes present within the slice. We further normalized the ratios of OT-I:reference thymocytes in each experiment so that the average of the corresponding "no OVA" samples was 1.0. (c) Expression of the activation marker CD69 by OT-I thymocytes displayed as Mean Fluorescence Intensity (MFI). ns not significant (p>0.05), **p<0.01, ****p<0.0001 (one-way ANOVA with Bonferroni's correction with a 95% confidence interval, b, or Kruskal-Wallis test with Dunn's multiple comparisons with a 95% confidence interval, c). Data are pooled from 3 independent experiments (b), or representative of 3 independent experiments (c), with mean and SEM of n=16 (b) or 5 (c) total slices per condition, where each dot represents an individual slice.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

of negative selection to TRA. In RIPmOVA transgenic mice, the model antigen ovalbumin (OVA), which provides the agonist peptide for OT-I thymocytes, is expressed in a subset of medullary thymic epithelial cells (mTECs), and is presented in the medulla by mTECs and hematopoietic-derived cells^{3,22}. Because approximately 50% of CD4+CD8+ double positive thymocytes, and all of the more mature CD8+ single positive thymocytes from OT-I mice express a medullary chemokine receptor pattern (CXCR4-CCR7+) and migrate to the medulla in thymic slices²³⁻²⁶, we expected that the majority of OT-I thymocytes would encounter OVA when added to RIPmOVA slices. We observed that approximately 50% of OT-I thymocytes were lost by 9 hours, and there was no further reduction through 48 hours of culture (Fig. 2a). Thus, the timing and extent of negative selection in a TRA model are in line with our previous results using a ubiquitous model of negative selection. We used 2-photon time-lapse microscopy to visualize the interactions between OT-I thymocytes and phagocytes on RIPmOVA thymic slices¹⁰. To visualize thymocyte death, we used a previously described method in which thymocytes are doublelabeled with a cytosolic dye (SNARF, shown in red) that escapes as cells lose membrane integrity, and a nuclear dye (Hoechst, shown in blue) that increases signal during apoptosis-associated chromatin changes^{10,27}. OT-I thymocytes were overlaid onto thymic slices from LysMGFP RIPmOVA transgenic mice and imaged after 6-10 hours of culture. Consistent with our earlier study¹⁰, cell death occurred while thymocytes were in close contact with, or engulfed by, GFP-expressing

phagocytes (Fig. 2b, Supplementary Movies 1-2). Thus, the close coupling of

autoreactive thymocyte death and phagocytosis occurs during negative selection to

both tissue-restricted and ubiquitous self-antigens.

139

140

141

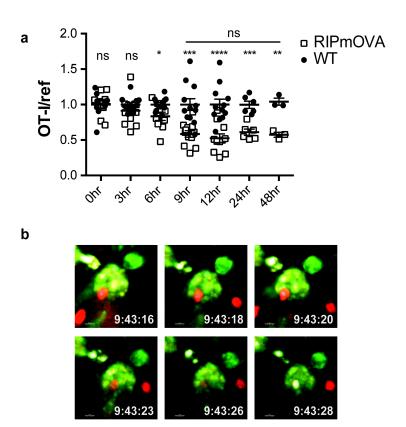


Figure 2. Thymocyte death and phagocytosis during negative selection to tissue-restricted antigen

(a) Negative selection on RIPmOVA slices (open squares), displayed as the ratio of live OT-I thymocytes relative to live reference thymocytes present within the slice, normalized to no antigen controls (black squares). Data are pooled from 4 (0, 3, 6, 9, and 12 hour timepoints), 2 (24 hour timepoint), or 1 (48 hour timepoint) experiments, with mean and SEM of n=3 (48hr WT and RIPmOVA), 6 (24hr WT and RIPmOVA), 9 (0hr WT and RIPmOVA), 7 (6hr RIPmOVA), 11 (12hr WT), 12 (3hr and 9hr WT and RIPmOVA, 6hr and 12hr WT) total slices per condition, respectively. where each dot represents an individual slice. ns not significant (p>0.05), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Unpaired two-tailed Student's *t*-test of WT vs RIPmOVA for each timepoint, or two-way ANOVA with 95% confidence interval with Tukey's multiple comparisons test to compare RIPmOVA samples across timepoints (horizontal line). (b) Still images from a time-lapse series showing an example of OT-I thymocyte death. OT-I thymocytes were depleted of mature CD8 SP and labeled with Hoechst and SNARF before overlaving on LysMGFP RIPmOVA thymic slices. Slices were imaged by two-photon scanning laser microscopy. A 30-minute movie was recorded in the medulla, with the time elapsed since thymocyte entry into the slice shown in white.

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

Phagocyte killing of autoreactive thymocytes is mediated by phosphatidyl serine receptors To determine whether phagocytes exert their effect on negative selection specifically through phagocytosis, we evaluated the efficiency of negative selection in an environment in which phagocytes are present, but impaired in their ability to phagocytose. Phosphatidylserine (PS) is exposed at the cell surface early in the apoptotic process, and serves as an "eat-me" signal to phagocytes¹⁴. To determine whether PS mediates phagocytosis of self-reactive thymocytes, we used Annexin V (AnnV), a small protein that binds to PS, to block the interaction between PS and its receptors in thymic slices²⁸. Negative selection on RIPmOVA thymic slices was completely blocked by treatment of thymic slices with AnnV (Fig. 3a), while antigen recognition, as assessed by CD69 upregulation, was not impaired (Fig. 3b). AnnV addition had a similar effect on negative selection in response to OVAp (Fig. 3c,d). These results confirm that phagocytosis promotes the death of autoreactive thymocytes, and suggest that PS receptors are important for this process. The phosphatidylserine receptor Tim-4 promotes negative selection of CD8 T cells in the thymus Phagocytes express a number of receptors for PS, allowing them to recognize and uptake apoptotic cells¹⁴. These include Tim-4, a PS receptor previously reported to be expressed and functional in the thymus¹⁵. Using flow cytometry, we found that Tim-4 is expressed by almost all F4/80^{hi} macrophages and ~30% of CD11c^{hi} DCs (Supplementary Fig. 3a). To investigate whether Tim-4 plays a role in negative

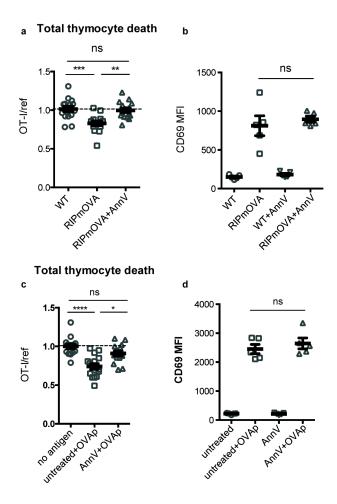


Figure 3. Phagocyte killing of autoreactive thymocytes is mediated by phosphatidylserine receptors

OT-I and reference thymocytes in AnnV buffer with or without AnnV were overlaid onto RIPmOVA slices (a,b) or WT slices treated with OVAp (c,d). Slices were then treated with AnnV and harvested 16 hours later for flow cytometric analysis. (a,c) Negative selection displayed as the ratio of live OT-I thymocytes relative to live reference thymocytes, normalized to no antigen controls. (b,d) Antigen recognition of OT-I thymocytes displayed as Mean Fluorescence Intensity (MFI) of the activation marker CD69. ns not significant (p>0.05), **p<0.01, ****p<0.001, ****p<0.0001 (one-way ANOVA with Bonferroni's correction with a 95% confidence interval, a,c,d, or two-tailed unpaired Mann-Whitney test with 95% confidence interval, b). Data are pooled from 3 independent experiments (a,c), or representative of 3 independent experiments (b,d), with mean and SEM of n=15 (a,c) or 5 (b,d) total slices per condition, where each dot represents an individual slice.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

selection. we prepared thymic tissue slices from Tim-4-/- RIPmOVA transgenic mice, overlaid OT-I and reference thymocytes, and assessed the extent of negative selection after 16 hours of culture. OT-I thymocyte death was not detectable in Tim-4-/- RIPmOVA thymic slices, but was readily detectable in thymic slices from age and sex-matched Tim-4+/+ RIPmOVA controls (Fig. 4a). Negative selection in response to OVAp was also slightly reduced on Tim-4^{-/-} thymic slices, although the difference did not reach statistical significance (Fig. 4c). Normal CD69 upregulation by OT-I thymocytes suggested that OVA is presented normally in the Tim-4^{-/-} thymic environment (Fig. 4b,d). This is consistent with the normal number and phenotype of thymic phagocytes that we observed in Tim-4-/- mice (Supplementary Fig. 3b,c,d). Taken together, these data support the idea that phagocytosis is required for effective negative selection, and suggest that Tim-4 is a relevant player in this process. Antigen presentation by phagocytes promotes efficient negative selection The close association between autoreactive thymocytes and phagocytes just prior to their engulfment and death¹⁰ (Fig. 2c) suggests that phagocytes may also serve as APCs. Moreover, the ability of a peptide-presenting cell to phagocytose may make it more potent at inducing negative selection. To test this idea, we took advantage of the fact that bone marrow-derived dendritic cells (DCs) have phagocytic activity (Supplementary Fig. 4) and can serve as exogenous peptide presenting cells when overlaid and allowed to migrate into thymic slices ^{29,30}. We added OVA-loaded Tim-4^{-/-} or WT DCs onto thymic slices that had been previously overlaid with OT-I and

189

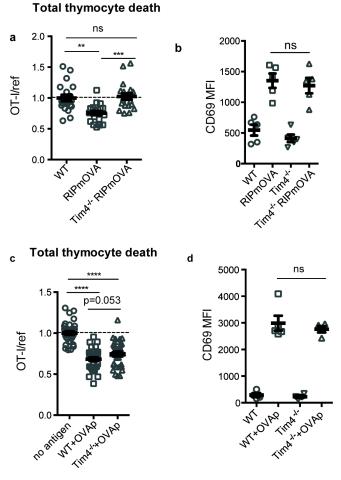
190

191

192

193

194


195

196

197

reference thymocytes, and measured the extent of negative selection 16 hours later (Fig. 5a). Interestingly, while OVA-loaded WT DCs induced a significant level of negative selection, Tim-4-/- DCs failed to induce detectable negative selection (Fig. 5b). This defect was not due to a deficiency in peptide presentation by Tim-4-/- DCs, as there was no significant difference in the upregulation of CD69 by OT-I thymocytes (Fig. 5c). The fact that peptide-presenting cells defective in phagocytosis were unable to effectively induce negative selection, despite the fact that functional (non-presenting) endogenous phagocytes were present in the thymic slice, indicates that negative selection is more efficient when the same cell serves both as APC and phagocyte.

Figure 4. The phosphatidylserine

receptor Tim-4 promotes negative selection to tissue-restricted antigens OT-I and reference thymocytes were overlaid onto WT or Tim-4-/- thymic slices with or without the RIPmOVA transgene (a,b), or with or without addition of OVAp (c.d), and slices were dissociated and analyzed by flow cytometry 16 hours later. (a,c) Negative selection displayed as the ratio of surviving OT-I thymocytes relative to reference thymocytes, normalized to no antigen controls. (b,d) Antigen recognition of OT-I thymocytes displayed as Mean Fluorescence Intensity (MFI) of the activation marker CD69. ns not significant (p>0.05), **p<0.01, ***p<0.001, ****p<0.0001 (one-way ANOVA with Bonferroni's correction with 95% confidence interval, a-c, or Kruskal-Wallis test with Dunn's multiple comparisons with 95% confidence interval, d). Data are pooled from 4 (a) or 7 (c) independent experiments, or representative of 4 (b) or 7 (d) independent experiments, with mean and SEM of n=20 (a), 35 (c) or 5 (b,d) total slices per condition, where each dot represents an individual slice.

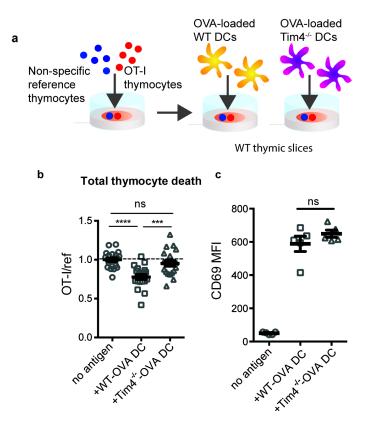


Figure 5. Peptide presentation by phagocytes promotes efficient negative selection

(a) Schematic of the experimental setup: OT-I and reference thymocytes were overlaid onto WT thymic slices onto which OVA-loaded or unloaded WT or Tim-4-/- BMDCs were added. Slices were dissociated and analyzed by flow cytometry 16 hours later. (b) Negative selection displayed as the ratio of live OT-I thymocytes relative to live reference thymocytes, normalized to no antigen controls. Data are pooled from 4 experiments, with mean and SEM of n=20 total slices per condition shown in red. (c) Antigen recognition of OT-I thymocytes displayed as Mean Fluorescence Intensity (MFI) of the activation marker CD69. Data are representative of 4 independent experiments. ns not significant (p>0.05), ***p<0.001, ****p<0.001 (one-way ANOVA with Bonferroni's correction with 95% confidence interval). Data are pooled from 4 independent experiments (b), or representative of 4 independent experiments (c), with mean and SEM of n=20 (a), or 5 (c) total slices per condition, where each dot represents an individual slice.

Discussion

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

While the importance of phagocytes in clearing dead thymocytes has long been appreciated, their role during negative selection prior to thymocyte death remained unknown. Here, we provide evidence for key roles for phagocytes as antigen presenting cells and as active inducers of thymocyte death. We demonstrate that phagocytosis promotes autoreactive thymocyte death, and that the recognition of PS is critical for this process. Additionally, we show that negative selection is most efficient when the phagocyte also presents the negative selecting peptide. Taken together, our data support a multi-step model for negative selection in which a strong TCR signal initiates apoptosis, followed by phagocytosis to deliver the lethal hit. Moreover, the coupling of these two steps that occurs when phagocytes also serve as APCs leads to more efficient negative selection (Supplementary Fig. 5a). *In vitro* studies of apoptosis support a model in which a death signal initiates a cellautonomous program of cellular destruction involving protease and nuclease activation, PS exposure on the outer membrane, membrane blebbing, and the formation of apoptotic bodies². Our current work adds to a growing body of evidence that the early events associated with apoptosis are not necessarily a death sentence. For example, activated T cells can transiently express active caspase-3 and expose PS at the cell surface, but ultimately avoid cell death³¹⁻³⁵. Moreover, phagocyte-dependent killing is critical for regulating the size of T cell, erythrocyte, and neutrophil populations, as well as removal of transient structures during

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

development³⁶⁻⁴⁴. Thus, mounting evidence suggests that phagocytosis is a critical final step in cell death in vivo. The mechanism by which phagocytes actually kill their target cells remains unknown. Following phagocytosis, the engulfed cell would be exposed to lysosomal proteases and other degradative enzymes. Furthermore, under certain conditions phagocytes release reactive oxygen species (ROS) into the phagosome, and ROS have been shown to be important for the phagocytosis-induced death of neurons during development in the mouse brain³⁶. It is tempting to speculate that the cytotoxic environment that a cell encounters within the phagosome following engulfment is ultimately responsible for its death. Although indirect mechanisms such as retinoic acid and cytokine production by phagocytes⁴⁵ and PS signaling³¹, might also impact thymocyte survival, the fact that we observe similar defects in negative selection upon phagocyte depletion, blocking PS, and mutation of a PS receptor, strongly suggests that phagocytes mediate thymocyte death directly via phagocytosis. Our observation that negative selection is most efficient when phagocytes also serve as peptide-presenting cells implies that the phagocytic activity of a peptidepresenting cell is a key factor in determining thymocyte fate. Indeed, the inability to phagocytose could help to explain the relative inefficiency of thymic stromal cells to induce negative selection^{5-7,29}, in contrast to the phagocytic activity of many hematopoietic cells which are potent inducers of negative selection. It is worth

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

noting that many thymic phagocytes, identified in this study by the expression of the LysM-GFP reporter, also express the DC marker CD11c¹³ (Supplementary Fig. 1). Thus, a subset of thymic hematopoietic cells with characteristics of both DCs and macrophages may be particularly important mediators of negative selection. Although some non-phagocytic subsets, including mTECs, thymocytes, and B cells, can induce negative selection^{3,21,46}, this process may be rendered less efficient by the requirement for a second cellular encounter with a phagocyte in order to complete negative selection (Supplementary Fig. 5b). The initiation of phagocytosis is dependent on the recognition of target cells via a variety of receptors for "eat me" signals, including PS. We found that mutation of a single PS receptor, Tim-4, impaired negative selection to TRA, but had a less obvious impact on negative selection to ubiquitous antigen. On the other hand, globally blocking PS significantly impaired both forms of negative selection. These results could indicate that Tim-4 plays a non-redundant role in phagocytosis in the medulla, the site of TRA presentation, whereas other PS receptors may participate in phagocytosis in the thymic cortex, where negative selection to ubiquitous antigen takes place^{5,8,47}. Alternatively, negative selection to TRA might be more sensitive to perturbations in phagocytosis, given that TRA are typically expressed at low levels, and may deliver a relatively weak apoptotic signal. In line with this idea, cells receiving a weak apoptotic signal in *C. elegans* embryos are more dependent upon phagocytosis for their death than cells receiving a strong apoptotic signal³⁹. This raises the intriguing possibility that phagocytes might be especially critical during

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

negative selection to relatively low-affinity or rare self-antigens, which pose the greatest risk as targets of autoimmunity⁴⁸. A requirement for Tim-4 in negative selection involving relatively weak apoptotic stimuli is consistent with the mild autoimmune phenotype reported in Tim-4-/mice⁴⁹. Although their hyperimmune phenotype was initially attributed to defective phagocytosis in the periphery^{44,49}, our data suggest that an increase in the release of autoreactive T cells from the thymus due to defective thymic phagocytes might also contribute. Notably, Tim-4-/- mice do not develop overt autoimmunity, likely due to the presence of other tolerance mechanisms, such as regulatory T cells and other peripheral tolerance mechanisms, which could serve to keep self-reactive T cells in check. Our current data contribute to emerging evidence that the context in which an autoreactive thymocyte encounters peptides, shaped largely by the characteristics of the peptide-presenting cell, has profound impacts on its fate. We recently reported that thymic dendritic cells that provide both high-affinity TCR ligands and a local source of IL-2 can efficiently support the development of regulatory T cells^{30,47}. Thus, the decision of an autoreactive thymocyte to die or differentiate may ultimately depend on whether it engages a peptide-presenting cell that promotes its death or supports its further development.

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Materials and methods Mice All mice were bred and maintained under pathogen-free conditions in an American Association of Laboratory Animal Care-approved facility at the University of California, Berkeley. The University of California, Berkeley Animal Use and Care Committee approved all procedures. C57BL/6, C57BL/6-Tg(Ins2-TFRC/OVA)296Wehi/WehiI (RIPmOVA), and C567BL/6-Tg(Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6)2Bck/I (MAFIA) mice were from Jackson Labs. OT-I Rag2-/- mice were from Taconic Farms. LysMGFP, F5 Rag1-/-, and Tim-4-/- mice have been previously described^{19,50,51}. LysMGFP RIPmOVA and Tim-4-/- RIPmOVA mice were generated by crossing LysMGFP or Tim-4^{-/-} mice to RIPmOVA mice. Mice were used from four to eight weeks of age. Thymocyte Isolation and Labeling Thymuses were collected from OT-I Rag2-/-, F5 Rag1-/-, or B6 mice and dissociated through a 70µm cell strainer to yield a cell suspension. Thymocytes were then labeled with 1uM Cell Proliferation Dye eFluor450 or 0.5uM Cell Proliferation Dye eFluor670 (Thermo Fisher Scientific) at 10⁷ cells/ml at 37°C for 15 minutes in PBS, then washed and resuspended in complete RPMI (containing 10% FBS, penicillin streptomycin, and 2-mercaptoethanol, cRPMI) for overlay onto thymic slices. Thymocytes do not proliferate at the timepoints collected, allowing overlaid thymocytes to be distinguished from slice resident thymocytes by Cell Proliferation

Dyes (Fig. 1a). In imaging experiments, OT-I thymocytes were depleted of mature CD8 single positives using the EasySep Biotin Positive Selection Kit (Stemcell Technologies) with anti-human/mouse $\beta 7$ integrin antibody (FIB504, Biolegend) according to the manufacturer's instructions. Thymocytes were then labeled with 3 μ M SNARF (Thermo Fisher Scientific) at 10^7 cells/ml at 37° C for 15 minutes in PBS, then washed and labeled with 5μ M Hoechst 33342 (Thermo Fisher Scientific) at 10^7 cells/ml at 37° C for 15 minutes.

Thymic Slices

Preparation of thymic slices has been previously described 52,53 . Thymic lobes were cleaned of connective tissue, embedded in 4% agarose with a low melting point (GTG-NuSieve Agarose, Lonza), and sectioned into slices of 200- $400\mu m$ using a vibratome (1000 Plus sectioning system, Leica). Slices were overlaid onto $0.4\mu m$ transwell inserts set in 6 well tissue culture plates with 1ml cRPMI under the insert. 0.5- $2x10^6$ thymocytes in $10\mu l$ cRPMI were overlaid onto each slice and allowed to migrate into the slice for 2 hours, then excess thymocytes were removed by gentle washing with PBS. Thymocytes actively migrate into the slice and localize as expected based on their maturation status 24,26,54 . For peptide-induced negative selection, $10\mu l$ of $1\mu M$ SIINFEKL (AnaSpec) in PBS was overlaid onto each slice for 30 minutes, then removed by pipetting. To quantify negative selection, we used a fluorescent live/dead stain (Ghost Dye Violet 510 or Fixable Viability Dye eFluor 780) to identify live cells (as shown in Fig. 1a). We then calculated the ratio of total live OT-I thymocytes to total live reference (either wild type thymocytes or

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

thymocytes expressing an irrelevant TCR: F5) recovered from the thymic slice. In general, the ratio of OT-I to reference populations was close to 1.0 in the absence of OVA, however, there was some variability due to differential ability of the two populations to enter or survive in the tissue. We therefore further normalized the ratios of OT-I:reference thymocytes in each experiment so that the average of the corresponding "no OVA" samples was always 1.0. For depletion of phagocytes, 1µM AP20187 (Clontech) was added to the media under the transwell and 10ul of 10uM AP20187 in PBS was added on top of each slice overnight (16-18 hours). The drug was washed out from the top of the slice with PBS prior to overlaying thymocytes. For Annexin V treatment, thymocytes were resuspended in Annexin V binding buffer (Thermo Fisher Scientific) with purified Annexin V (BioLegend) at 200 µg/ml prior to overlaying on the slice. Following peptide treatment, 10ul of purified Annexin V at 200µg/ml in Annexin V binding buffer was overlaid onto each slice. Bone marrow-derived dendritic cell cultures Bone marrow was flushed from the femurs and tibias of mice into sterile PBS, and treated with ammonium chloride-potassium bicarbonate buffer for lysis of red blood cells. Cells were resuspended at 10⁶/ml in cRPMI with 20ng/ml granulocytemacrophage colony-stimulating factor (GM-CSF, Peprotech) and plated for culture. Cells were cultured for 7 days, with replacement with fresh media containing GM-CSF on day 6. On day 7, semi-adherent cells were collected and loaded with 1µM SIINFEKL at 10⁷/ml in cRPMI at 37°C for 30 minutes. Some BMDCs were incubated

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

without peptide, as indicated. Cells were then washed and 105 BMDCs were overlaid per slice, following washout of excess thymocytes. Flow cytometry Thymic slices, whole thymuses, and spleens were dissociated into FACS buffer (0.5% BSA in PBS) and filtered before staining. Splenocytes and blood samples were treated with ammonium chloride-potassium bicarbonate buffer for 5 or 10 minutes, respectively, at room temperature prior to staining to lyse red blood cells. Cells were stained for 10 minutes on ice in 24G2 supernatant containing the following antibodies: CD4 (GK1.5), CD8 α (53-6.7), CD69 (H1.2F3). Cells were then washed in PBS and stained in Ghost Dve Violet 510 (Tonbo Biosciences) or Fixable Viability Dye eFluor780 (Thermo Fisher Scientific) for 10 minutes on ice. For staining of thymic phagocyte populations, whole thymuses were minced and incubated in cRPMI containing 1mg/ml collagenase Type IA (Sigma) and 400ug/ml DNase I (Roche) at 37°C for 1 hour. After vigorous pipetting, samples were filtered, then stained in 24G2 supernatant containing the following antibodies: CD11b (M1/70), CD11c (N418), F4/80 (BM8), Tim-4 (RMT4-54), MHC I H-2Kd/H2-Dd (34-1-2S), MHC II I-A/I-E (M5/114.15.2), CD80 (16-10A1), CD86 (GL1), ICAM (YN1/1.7.4). Cells were then washed in PBS and stained in Fixable Viability Dye eFluor780 (Thermo Fisher Scientific) for 10 minutes on ice. All antibodies were from Thermo Fisher Scientific, Biolegend, or Tonbo Biosciences, Flow cytometry was performed

with a LSRII or Fortessa X20 (BD Biosciences) and Flowlo software (TreeStar) was

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

used for data analysis. Gating strategies are shown for thymocytes (Fig. 1a) and thymic phagocyte populations (Supplementary Fig. 1). **Two-photon microscopy** Two-photon imaging of thymic slices has been described previously 10,29,52. Briefly, thymic slices were glued to coverslips and fixed to a dish being perfused at a rate of 1ml/minute with oxygenated, phenol red-free DMEM media warmed to 37°C. Imaging was performed with a Zeiss 7 MP two-photon microscope with a Coherent Chameleon laser tuned to 920nm. Signals were separated using 495nm and 560nm dichroic mirrors. Imaging volumes were scanned every 30 seconds for 30 minutes, and images were processed with Imaris 7.3 software (Bitplane). **Statistics** Statistical analysis was carried out using Prism software (GraphPad). The D'Agostino and Pearson omnibus K2 normality test, Shapiro-Wilk normality test, or Kolmogorov-Smirnov test was applied depending on sample size, and parametric or non-parametric statistical analyses were carried out as appropriate (specific tests used are indicated in figure legends). P values of <0.05 were considered significant. Acknowledgements We would like to thank members of the Robey lab for technical advice and helpful discussion, H. Melichar, B. Weist, and B.J. Fowlkes for critical reading of the manuscript, S. W. Chan and O. Guevarra for technical assistance, P. Herzmark for

- help with two-photon imaging, and Wenjun Ouyang (Genentech) for providing
- 404 Tim4-/- mice. Supported by the National Institutes of Health (R01AI064227 to
- 405 E.A.R.) and a University of California Cancer Research Coordinating Committee
- Fellowship to N.S.K..

Competing Interests

The authors declare no competing interests.

References

4

- 1. Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and Negative Selection of T Cells. *Annu. Rev. Immunol.* **21**, 139–176 (2003).
- 2. Strasser, A., O'Connor, L. & Dixit, V. M. Apoptosis Signaling. *Annu. Rev. Biochem.* **69**, 217–245 (2000).
- 3. Gallegos, A. & Bevan, M. Central Tolerance to Tissue-specific Antigens Mediated by Direct and Indirect Antigen Presentation. *Journal of Experimental Medicine* (2004).
- 4. Taniguchi, R. *et al.* Detection of an autoreactive T cell population within the polyclonal repertoire that undergoes distinct Aire-mediated selection. *Proceedings of the National Academy of Sciences* 1–6 (2012). doi:10.1073/pnas.1120607109/-/DCSupplemental/pnas.201120607SI.pdf
- 5. McCaughtry, T. M., Baldwin, T. A., Wilken, M. S. & Hogquist, K. A. Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. *Journal of Experimental Medicine* **205**, 2575–2584 (2008).
- 6. Proietto, A. & Wu, L. Dendritic cells in the thymus contribute to regulatory T cell induction. *Proceedings of the National Academy of Sciences* 1–8 (2008).
- 7. Ohnmacht, C. *et al.* Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. *Journal of Experimental Medicine* **206**, 549–559 (2009).
- 8. Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). *Nat Rev Immunol* **14**, 377–391 (2014).
- 9. Surh, C. D. & Sprent, J. T-cell apoptosis detected *in situ* during positive and negative selection in the thymus. *Nature* **312**, 100–103 (1994).
- 10. Dzhagalov, I. L., Chen, K. G., Herzmark, P. & Robey, E. A. Elimination of Self-Reactive T Cells in the Thymus: A Timeline for Negative Selection. *PLoS Biol* **11**, e1001566 (2013).
- 11. Norbury, C. C., Malide, D., Gibbs, J. S., Bennink, J. R. & Yewdell, J. W. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. *Nat Immunol* **3**, 265–271 (2002).
- 12. Guerri, L. *et al.* Analysis of APC Types Involved in CD4 Tolerance and Regulatory T Cell Generation Using Reaggregated Thymic Organ Cultures. *The*

- Journal of Immunology 190, 2102–2110 (2013).
- 13. Ladi, E. *et al.* Thymocyte-Dendritic Cell Interactions near Sources of CCR7 Ligands in the Thymic Cortex. *The Journal of Immunology* **181,** 7014–7023 (2008).
- 14. Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. *Nat Immunol* **16**, 907–917 (2015).
- 15. Miyanishi, M. *et al.* Identification of Tim4 as a phosphatidylserine receptor. *Nature* **450**, 435–439 (2007).
- 16. Tacke, R. *et al.* The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus. *Nature Publishing Group* 1–13 (2015). doi:10.1038/srep10055
- 17. Elliott, M. R. *et al.* Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. *Nature* **461**, 282–286 (2009).
- 18. Burnett, S. H. Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. *Journal of Leukocyte Biology* **75**, 612–623 (2004).
- 19. Faust, N., Varas, F., Kelly, L. M., Heck, S. & Graf, T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. *Blood* **96**, 719–726 (2000).
- 20. Au-Yeung, B. B. *et al.* Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. *Nat Immunol* **15**, 687–694 (2014).
- 21. Melichar, H. J., Ross, J. O., Taylor, K. T. & Robey, E. A. Stable Interactions and Sustained TCR Signaling Characterize Thymocyte–Thymocyte Interactions that Support Negative Selection. *The Journal of Immunology* **194**, 1057–1061 (2015).
- 22. Kurts, C. *et al.* Constitutive Class I-restricted Exogenous Presentation of Self Antigens In Vivo. *Journal of Experimental Medicine* **184**, 923–930 (1996).
- 23. Ross, J. O. *et al.* Distinct phases in the positive selection of CD8+ T cells distinguished by intrathymic migration and T-cell receptor signaling patterns. *Proceedings of the National Academy of Sciences* **111,** E2550–E2558 (2014).
- 24. Halkias, J. *et al.* Opposing chemokine gradients control human thymocyte migration in situ. *J. Clin. Invest.* **123**, 2131–2142 (2013).
- 25. Yin, X. *et al.* CCR7 Expression in Developing Thymocytes Is Linked to the CD4 versus CD8 Lineage Decision. *The Journal of Immunology* **179**, 7358–7364 (2007).
- 26. Kurd, N. & Robey, E. A. T-cell selection in the thymus: a spatial and temporal perspective. *Immunol Rev* **271**, 114–126 (2016).
- 27. Mempel, T. R. *et al.* Regulatory T Cells Reversibly Suppress Cytotoxic T Cell Function Independent of Effector Differentiation. *Immunity* **25,** 129–141 (2006).
- 28. Krahling, S., Callahan, M. K., Williamson, P. & Schlegel, R. A. Exposure of phosphatidylserine is a general feature in the phagocytosis of apoptotic lymphocytes by macrophages. *Cell Death and Differentiation* **6**, 183–189 (1999).
- 29. Melichar, H. J., Ross, J. O., Herzmark, P., Hogquist, K. A. & Robey, E. A. Distinct Temporal Patterns of T Cell Receptor Signaling During Positive Versus

- Negative Selection in Situ. Science Signaling 6, ra92 1-14 (2013).
- 30. Weist, B. M., Kurd, N., Boussier, J., Chan, S. W. & Robey, E. A. Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition. *Nat Immunol* **16**, 635–641 (2015).
- 31. Elliott, J. I. *et al.* Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. *Nat Cell Biol* **7**, 808–816 (2005).
- 32. Fischer, K. *et al.* Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. *Blood* **108**, 4094–4101 (2006).
- 33. Miossec, C., Dutilleul, V., Fassy, F. & Diu-Hercend, A. Evidence for CPP32 Activation in the Absence of Apoptosis during T Lymphocyte Stimulation. *Journal of Biological Chemistry* **272**, 13459–13462 (1997).
- 34. Alam, A., Cohen, L. Y., Aouad, S. & Sekaly, R.-P. Early Activation of Caspases during T Lymphocyte Stimulation Results in Selective Substrate Cleavage in Nonapoptotic Cells. *Journal of Experimental Medicine* **190**, 1879–1890 (1999).
- 35. McComb, S., Mulligan, R. & Sad, S. Caspase-3 Is Transiently Activated without Cell Death during Early Antigen Driven Expansion of CD8+ T Cells In Vivo. *PLoS ONE* **5**, e15328 (2010).
- 36. Marin-Teva, J. L. *et al.* Microglia Promote the Death of Developing Purkinje Cells. *Neuron* **41**, 535–547 (2004).
- 37. Lang, R. A. & Bishop, J. M. Macrophages Are Required for Cell Death and Tissue Remodeling in the Developing Mouse Eye. *Cell* **74**, 453–462 (1993).
- 38. Reddien, P. W., Cameron, S. & Horvitz, H. R. Phagocytosis promotes programmed cell death in *C. elegans. Nature* **412**, 198–202 (2001).
- 39. Hoeppner, D. J., Hengartner, M. O. & Schnabel, R. Engulfment genes cooperate with *ced-3* to promote cell death in *Caenorhabditis elegans*. *Nature* **412**, 202–206 (2001).
- 40. Park, Y.-J. *et al.* PAI-1 inhibits neutrophil efferocytosis. *Proceedings of the National Academy of Sciences* **105**, 11784–11789 (2008).
- 41. Dalli, J. *et al.* Annexin A1 regulates neutrophil clearance by macrophages in the mouse bone marrow. *The FASEB Journal* **26,** 387–396 (2012).
- 42. Khandelwal, S., van Rooijen, N. & Saxena, R. K. Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation. *Transfusion* **47**, 1725–1732 (2007).
- 43. Oldenberg, P.-A. *et al.* Role of CD47 as a Marker of Self on Red Blood Cells. *Science* **288**, 2051–2054 (2000).
- 44. Albacker, L. A. *et al.* TIM-4, a Receptor for Phosphatidylserine, Controls Adaptive Immunity by Regulating the Removal of Antigen-Specific T Cells. *The Journal of Immunology* **185**, 6839–6849 (2010).
- 45. Sarang, Z. *et al.* Immunobiology. *Immunobiology* **218**, 1354–1360 (2013).
- 46. Yamano, T. *et al.* Thymic B Cells Are Licensed to Present Self Antigens for Central T Cell Tolerance Induction. *Immunity* **42**, 1048–1061 (2015).
- 47. Klein, L., Robey, E. A. & Hsieh, C.-S. Central CD4. *Nat Rev Immunol* 1–12 (2018). doi:10.1038/s41577-018-0083-6
- 48. Koehli, S., Naeher, D., Galati-Fournier, V., Zehn, D. & Palmer, E. Optimal T-cell receptor affinity for inducing autoimmunity. *Proceedings of the National Academy of Sciences* **111**, 17248–17253 (2014).

- 49. Rodriguez-Manzanet, R. *et al.* T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. *Proceedings of the National Academy of Sciences* **107**, 8706–8711 (2010).
- 50. Mamalaki, C. *et al.* Thymic depletion and peripheral activation of class. *Proceedings of the National Academy of Sciences* **89,** 11342–11346 (1992).
- 51. Wong, K. *et al.* Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. *Proceedings of the National Academy of Sciences* **107**, 8712–8717 (2010).
- 52. Dzhagalov, I. L., Melichar, H. J., Ross, J. O., Herzmark, P. & Robey, E. A. *Two-Photon Imaging of the Immune System*. **60**, 12.26.1–12.26.20 (Current Protocols in Cytometry, 2012).
- 53. Ross, J. O., Melichar, H. J., Halkias, J. & Robey, E. A. in *Methods in Molecular Biology* **1323**, 131–140 (Springer New York, 2016).
- 54. Ehrlich, L. I. R., Oh, D. Y., Weissman, I. L. & Lewis, R. S. Differential Contribution of Chemotaxis and Substrate Restriction to Segregation of Immature and Mature Thymocytes. *Immunity* **31**, 986–998 (2009).